使用 Pytorch 对电子健康记录 (EHR) 进行预测建模 ZhiGroup

本文介绍了一个开源的Pytorch库,用于电子健康记录(EHR)的预测建模,包括数据预处理、多种RNN模型和与传统机器学习方法的比较。该库降低了研究者在EHR领域使用深度学习的入门难度,但强调并非最先进的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用 Pytorch 对电子健康记录 (EHR) 进行预测建模

https://github.com/ZhiGroup/pytorch_ehr

概述

尽管关于视觉和 NLP 模型的存储库有很多,但我们能找到的使用深度学习的 EHR 存储库非常有限。在这里,我们开源了我们的存储库,实现了数据预处理、数据加载和一系列常见的 RNN 模型。主要目标是降低研究人员进入该领域的门槛。尽管我们的模型非常有竞争力(描述我们工作的论文很快就会发布),但我们并不声称有任何最先进的性能。

基于现有的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值