CLIP(Contrastive Language-Image Pre-training)

CLIP(Contrastive Language-Image Pre-training)是一种多模态预训练神经网络模型,由OpenAI在2021年初发布469。CLIP的核心创新在于其能够将图像和文本映射到一个共享的向量空间中,使得模型能够理解图像和文本之间的语义关系1。CLIP模型的架构非常简洁,但在zero-shot文本-图像检索zero-shot图像分类文本到图像生成任务的指导、开放域检测分割等任务上表现出色1。

CLIP模型的创新点主要包括以下几个方面1:

  1. 统一的向量空间:CLIP的关键创新之一是将图像和文本都映射到同一个向量空间中,这使得模型能够直接在向量空间中计算图像和文本之间的相似性,而无需额外的中间表示。

  2. 对比学习:CLIP使

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值