被OpenAI、Mistral AI带火的MoE是怎么回事?一文贯通专家混合架构部署

被OpenAI、Mistral AI带火的MoE是怎么回事?一文贯通专家混合架构部署

机器之心 2024-01-20 11:14 北京

选自 HuggingFace 博客

编译:赵阳

本文将介绍 MoE 的构建模块、训练方法以及在使用它们进行推理时需要考虑的权衡因素。

专家混合 (MoE) 是 LLM 中常用的一种技术,旨在提高其效率和准确性。这种方法的工作原理是将复杂的任务划分为更小、更易于管理的子任务,每个子任务都由专门的迷你模型或「专家」处理。

早些时候,有人爆料 GPT-4 是采用了由 8 个专家模型组成的集成系统。近日,Mistral AI 发布的 Mixtral 8x7B 同样采用这种架构,实现了非常不错的性能(传送门:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值