NeurIPS 2024 | GAN已死!GAN万岁!极简GAN基线击败扩散模型!

NeurIPS 2024 | GAN已死!GAN万岁!极简GAN基线击败扩散模型!

转载自:机器之心

GANs are so back!?

2025 年了,GAN 能否击败扩散模型?答案是 Yes!

本周五,AI 社区开始讨论一种全新极简主义 GAN(生成对抗网络)。

图片

现代版 GAN 基准论文成为了周五 HuggingFace 热度最高的研究。该论文也入选了 NeurIPS 2024。

它并不像以往那样走 tricks 路径 —— 通过一场「现代化」改造,GAN 现在可以进行更长时间的训练(与扩散模型的训练步骤数相当),一旦 GAN 训练时间足够长,并且架构足够强大,它们就可以胜过扩散模型,并成为更好、更快、更小的模型。

来自布朗大学、康奈尔大学的研究者们表示,通过引入一个新的损失函数,我们就可以解决以往 GAN 模式崩溃(collapse)和不稳定性的问题。

为了证明可行性,他们测试了 GAN 里流行的 StyleGAN2,通过新的理论进行最简升级(修改后改名为「R3GAN」)。结果虽然模型变得更简单了,但 R3GAN 在图像生成和数据增强任务上性能还是超过了所有 GAN 模型和扩散模型。

图片

新的方法给未来的研究奠定了一个更为整洁、可扩展的基础。

图片

  • 论文链接:https://arxiv.org/abs/2501.05441

  • GitHub 链接:https://github.com/brownvc/R3GAN

  • HuggingFace:https://huggingface.co/spaces/multimodalart/R3GAN

有一种广泛流传的说法认为 GAN 很难训练,并且文献中的 GAN 架构充斥着大量的经验性 tricks。但是作者团队提供了反驳这一说法的证据,并以更有原则的方式建立了一个现代版 GAN 基线。

在该研究中,作者首先通过推导出一个行为良好的正则化相对 GAN 损失函数,解决了模式 dropping 和不收敛问题,而这些问题在以前经常是通过大量 ad-hoc tricks 来应对

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值