详细说明Encoder-only架构的特点以及他和encoder decoder的区别和联系

GPT-4o

Poe

Encoder-only 架构的特点

Encoder-only 模型只使用 Transformer 的编码器部分,专注于对输入序列的理解和表征学习。这类模型通常被用在需要对输入文本进行深度理解的任务上,如文本分类、问答和语义匹配。以下是 Encoder-only 架构的核心特点:


1. 双向上下文建模
  • 特点:Encoder-only 模型通过自注意力机制(Self-Attention)同时关注输入序列的前后文
  • 优势:相比单向模型(如 Decoder-only),它可以更全面地捕捉输入序列的全局语义,适合需要理解复杂上下文的任务。
  • 实现方式:在训练过程中,不对输入序列进行因果掩码(Causal Masking),允许模型在任何位置访问序列的所有位置。
  • 例子:BERT 的 Masked Language Model(MLM)训练任务通过随机遮盖部分单词,依赖左侧和右侧的信息来预测被遮盖的词,即双向建模的典型体现。

2. 适用于理解任务
  • 特点:Encoder-only 模型专注于理解输入序列,而不生成输出序列,因此适合处理分类、序列标注、问答、文本匹配等需要深度语义理解的任务。
  • 表现形式:通常将输入序列编码为固定长度的上下文表示(Contextualized Representations),然后用来进行下游任务。
  • 例子:BERT 通过 [CLS] token 的输出向量表示整个输入序列的语义,用于分类任务。

3. 自注意力机制(Self-Attention)
  • 特点Encoder-only 架构的核心是自注意力机制,它可以捕获输入序列中任何两个位置之间的关系(全局依赖)
  • 实现方式:每个输入 token 会对其他 token 的表示进行加权聚合,从而捕获句子中细粒度的依赖关系。
  • 对比:相比解码器中的因果注意力机制(Causal Attention),自注意力机制没有限制,可以全面利用整个输入序列的信息。

4. 掩蔽语言模型(Masked Language Model, MLM)
  • 特点:Encoder-only 架构通常通过 MLM 任务进行预训练,随机遮盖输入序列中的部分单词,然后让模型预测被遮盖的单词。
  • 优势:这种方式鼓励模型学习输入序列的全局上下文表示,适合理解类任务。
  • 对比:Decoder-only 模型进行自回归语言建模(Autoregressive Language Modeling),只预测下一个词。

5. 只编码,不生成
  • 特点:Encoder-only 模型仅对输入序列进行编码,不关心生成输出序列。
  • 例子:在 BERT 的预训练中,目标是生成输入序列的深层语义表示,而不是生成新的句子或序列。

6. 下游任务的适配性
  • 特点:Encoder-only 模型可以通过简单的分类头或序列标注头适配各种下游任务。
  • 例子
    • 文本分类任务:使用 [CLS] token 的输出表示进行分类。
    • 序列标注任务:对每个 token 的输出表示进行标注(如命名实体识别)。
    • 问答任务:使用输入上下文的表示来提取答案的起始和结束位置。

Encoder-only 与 Encoder-Decoder 的区别和联系

1. 架构组成
  • Encoder-only
    • 只包含 Transformer 的编码器部分。
    • 输入经过多层编码器后,直接输出上下文表示。
  • Encoder-Decoder
    • 同时包含编码器和解码器。
    • 编码器负责将输入序列编码为上下文表示,解码器从编码器的输出生成输出序列。
2. 信息处理方式
  • Encoder-only
    • 只对输入序列进行处理,捕获输入的全局上下文信息。
    • 不进行序列生成任务。
  • Encoder-Decoder
    • 编码器捕获输入序列的全局信息,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值