OpenManus、OWL真实测评,Manus的Agent护城河一碰就碎?
原创 AI沃茨 卡尔的AI沃茨 2025年03月10日 17:28 浙江
AI 时代项目复刻的速度有多快?
周四0:00出的 Manus,
周五晚上10:57 MetaGPT 开始 OpenManus 的第一次提交,
OWL 更夸张,CAMEL AI 在周四凌晨5:37从 Deep Swarm 改名为 OWL 后,开始提交更新。在 GAIA 基准测试,也就是 Manus 超过 OpenAI o1 Deep Research 的同款测试里,其 Level 1 分数达到 81.13,也超过了Deep Research,接近 Manus 的 86.5。
因为现在验证码还是一码难求,很多人还对这两个项目实际效果很感兴趣的,但是项目安装有门槛,尤其是 OWL,光是配 Key 就需要 OPENAI_API_KEY、GOOG_API_KEY、SEARCH_ENGINE_ID、HF_TOKEN、CHUNKR_API_KEY、FIRECRAWL_API_KEY,还需要基础的 python 环境和代码运行知识。
刚好上次我做了 Manus VS OpenAI o1 Deep Research & Claude3.7 Extended thinking,
Manus、OpenAI Deep Research 20个用例大横评,通用Agent抛弃奥特曼了。。。吗?
这次就算是硬刚 Manus 的第二篇,开源篇。
Here we go!
问题一、帮我写一个两个人机对战的贪吃蛇 HTML 游戏?
上来我们先来个难的,
之前测试 o1 Deep Research 的时候,这类游戏类就基本是它的死对头,就算人工将生成好的代码放到本地运行出错率也很高
已关注
关注
重播 分享 赞
关闭
观看更多
更多
退出全屏
切换到竖屏全屏退出全屏
卡尔的AI沃茨已关注
分享视频
,时长00:26
0/0
00:00/00:26
切换到横屏模式
继续播放
进度条,百分之0
播放
00:00
/
00:26
00:26
全屏
倍速播放中
0.5倍 0.75倍 1.0倍 1.5倍 2.0倍
超清 流畅
您的浏览器不支持 video 标签
继续观看
OpenManus、OWL真实测评,Manus的Agent护城河一碰就碎?
观看更多
转载
,
OpenManus、OWL真实测评,Manus的Agent护城河一碰就碎?
卡尔的AI沃茨已关注
分享点赞在看
已同步到看一看写下你的评论
再次赞一下 Manus 的完成率是真的很高,之前 Grok3 画的 ai game 的饼都快要实现了。
目前 OpenManus 和 QWL 都没有可视化界面,OpenManus主要是通过命令行输入提示语交互,而 QWL 是通过在代码文件里面修改问题文本完成交互,所以我会用 Trae 分别打开两个项目,尽可能把运行过程完整保留下来。
再再再严谨一点,这次的测试时间是03/10/12:00更新到两个项目的最新版本。
已关注
关注
重播 分享 赞
关闭
观看更多
更多
退出全屏
切换到竖屏全屏退出全屏
卡尔的AI沃茨已关注
分享视频
,时长00:07
0/0
00:00/00:07
切换到横屏模式
继续播放
进度条,百分之0
播放
00:00
/
00:07
00:07
全屏
倍速播放中
0.5倍 0.75倍 1.0倍 1.5倍 2.0倍
超清 流畅
您的浏览器不支持 video 标签
继续观看
OpenManus、OWL真实测评,Manus的Agent护城河一碰就碎?
观看更多
转载
,
OpenManus、OWL真实测评,Manus的Agent护城河一碰就碎?
卡尔的AI沃茨已关注
分享点赞在看
已同步到看一看写下你的评论
蓝色就是我控制的小蛇,OWL 的输出是分回合的 Round,但因为是命令行,一点点观看体验都没有,我用 Claude 总结出了 OWL 的思考步骤:
1. 基础搭建
- 创建 HTML 结构(canvas 元素)
- 设置 CSS 样式(居中显示)
- 初始化 JavaScript 变量和函数
2. 核心功能实现
- 蛇的移动控制(方向键和 WASD)
- 碰撞检测(边界、自身、对手)
- 食物系统(随机生成、得分)
3. 完善与测试
- 添加计分系统
- 实现游戏结束逻辑
- 进行功能测试和验证
为了保证输出的完整过程,运行的时候可以试试看python owl/run.py > q1.log 2>&1
OpenManus 是会自动写入同目录的logs的,虽然命令行输出还是比较难读,但是好处是给出了执行步骤、当前轮次使用的工具以及思考过程,并且还支持多轮对话。
2025-03-10 00:46:15.765 | INFO | app.agent.toolcall:think:54 - 🛠️ Manus selected 0 tools to use
2025-03-10 00:46:15.765 | INFO | app.agent.base:run:137 - Executing step 2/30
2025-03-10 00:46:26.661 | INFO | app.agent.toolcall:think:53 - ✨ Manus's thoughts: It looks like you've shared a conversation with an AI assistant called "OpenManus" that involved creating a two-player snake game in HTML. The conversation shows:
可惜前后2次都生成失败了。我同样让 Claude3.7 总结 OpenManus的思考和执行过程:
一、需求处理
1. 接收中文请求 → 解析双人控制/实时对战需求
2. 识别技术栈 → 选定HTML+CSS+JS组合
二、开发实施
- 对象建模:双蛇独立对象(坐标/颜色/控制)
- 核心逻辑:碰撞检测算法 + 游戏循环控制
- 界面构建:中文面板 + 状态按钮
三、输出响应
1. 生成完整可执行文件: /Users/lhj/AI/OpenManus/games/snake.html
2. 持续验证:30步循环校验控制逻辑与状态同步
3. 明确工具边界:声明专属工具集(PythonExecute/FileSaver)与通用编码能力
核心机制
- 稳定响应:相同请求始终保持代码一致性
- 语义理解:自动关联日志位置(如768行特征声明)
- 路径控制:严格限定输出路径为绝对路径
问题二、人物心理侧写
收集小米创始人 雷军 的公开发言信息以及互联网上对他的深入分析文章,分析他的世界观,人生观和价值观,穿透决策结果,找到他的决策第一模式。
输出一份关于他内心深处的心理侧写 PDF 报告。
已关注
关注
重播 分享 赞
关闭
观看更多
更多
退出全屏
切换到竖屏全屏退出全屏
卡尔的AI沃茨已关注
分享视频
,时长00:27
0/0
00:00/00:27
切换到横屏模式
继续播放
进度条,百分之0
播放
00:00
/
00:27
00:27
全屏
倍速播放中
0.5倍 0.75倍 1.0倍 1.5倍 2.0倍
超清 流畅
您的浏览器不支持 video 标签
继续观看
OpenManus、OWL真实测评,Manus的Agent护城河一碰就碎?
观看更多
转载
,
OpenManus、OWL真实测评,Manus的Agent护城河一碰就碎?
卡尔的AI沃茨已关注
分享点赞在看
已同步到看一看写下你的评论
Manus 总结出雷总的决策第一模式是"价值驱动型决策",这种决策模式以价值观先行、长期主义思维和用户视角优先为核心特征。虽然Manus没有直接输出PDF,但是系统本身支持将txt导出成PDF。
这个问题就是绝对的烧 Token 大头,跑半回我的 API 额度就花完了,伤不起啊,半个回合就花了2.97刀,按照这样计算的话,Manus一个月$200的话都不能算贵。。。
我们看看OWL表现如何,还是通过 Claude3.7 总结:
从日志分析,owl完成任务的过程如下:
1. 信息收集阶段 :
- 使用搜索工具搜索了"Lei Jun public speeches"
- 获取到三个主要文章来源:
- Lei Jun在印度的英语演讲
- Lei Jun的年度演讲
- 小米造车进展的相关报道
2. 内容分析阶段 :
- 使用document_processing_toolkit提取并分析了这些文章的内容
- 整理了Lei Jun的世界观、人生观和价值观
- 总结了他的决策风格和领导方式
3. PDF生成尝试 :
- 尝试使用两个不同的Python库生成PDF:
- 首先尝试使用 fpdf 库
- 然后尝试使用 reportlab 库
- 但两次尝试都失败了,原因是环境中缺少这些库(ModuleNotFoundError)
只筛选出了3篇文章来源,这个应该是比目前的 Deep Research和 Deep Search系统们的参考网页数要少。优点是并没有产生幻觉,还是得到了雷总的侧写报告。
雷军心理侧写报告
一、世界观
1. 创新与技术作为变革催化剂
- 坚信技术能够改善生活
- 通过小米在智能手机、智能家居和物联网等领域的扩张体现创新承诺
2. 全球视野
- 致力于扩大小米的全球影响力
- 拥抱国际市场和多元化的消费者需求
二、人生哲学
1. 勇气与韧性
- 在面对美国制裁等挑战时展现出坚韧
- 自筹资金投资造车项目,展现冒险精神和长期目标追求
2. 以用户为中心
- 重视用户反馈和互动
- 通过小米社区建立强大的用户基础
三、价值观
1. 专注与卓越
- 鼓励团队在特定领域追求卓越
- 注重产品质量而非数量
2. 社会责任
- 积极支持公益事业
- 强调技术创新与社会发展的结合
四、决策风格与领导力
1. 决策特点
- 战略性和长期导向
- 基于用户反馈做出决策
- 注重可持续发展和创新
2. 领导方式
- 以人为本的管理风格
- 注重团队建设和人才发展
- 营造开放的企业文化
- 具有远见和感召力
五、核心特征
1. 务实真诚的个人风格
2. 强调勇气和突破
3. 重视长期战略目标
4. 亲力亲为的工作态度
5. 注重用户价值和社会影响
结论:
雷军展现出一个既有远见又脚踏实地的科技企业家形象。他的决策模式融合了战略思维、用户导向和社会责任感,形成了独特的领导风格。他的成功源于对技术创新的坚持、对用户需求的关注以及在面对挑战时展现出的勇气与决心。
我个人是更喜欢 OWL 的总结风格。接下来看看 OpenManus
这次没有输出。。。
这个真不是我刻意黑 OpenManus,运行了两次,它从一开始就卡在了工具调用。因为我还没有把源代码会过一遍(太肝了),但目前OpenManus除了配置 Claude API 就没有其他三方 API 工具(如联网等)的配置了,会不会后续把支持的工具列表放出来。
从日志分析来看,虽然最初的请求是要生成一个关于雷军的心理分析报告,但是由于系统存在以下问题,实际并没有生成内容:
1. 系统行为分析:
- 系统计划执行30个步骤
- 每个步骤中,AI助手都在重复声明它无法使用所需工具
- 没有实际执行内容生成的任务
- 所有步骤都显示"Manus selected 0 tools to use"
2. 主要问题:
- AI助手一直在强调它不能执行Python代码
- 不能保存文件
- 不能访问互联网搜索
- 不能生成PDF
- 但最关键的是它没有转向使用已有知识来完成内容生成的任务
问题三、小球跳动
已关注
关注
重播 分享 赞
关闭
观看更多
更多
退出全屏
切换到竖屏全屏退出全屏
卡尔的AI沃茨已关注
分享视频
,时长00:09
0/0
00:00/00:09
切换到横屏模式
继续播放
进度条,百分之0
播放
00:00
/
00:09
00:09
全屏
倍速播放中
0.5倍 0.75倍 1.0倍 1.5倍 2.0倍
超清 流畅
您的浏览器不支持 video 标签
继续观看
OpenManus、OWL真实测评,Manus的Agent护城河一碰就碎?
观看更多
转载
,
OpenManus、OWL真实测评,Manus的Agent护城河一碰就碎?
卡尔的AI沃茨已关注
分享点赞在看
已同步到看一看写下你的评论
Manus能做出这样丝滑的短视频还是很有意思的,从执行过程,它还去看视频学习如何用Python做一个小球游戏,通过游戏画面来合成视频,还是AI这个新脑子好用。关键是还自动加上了背景音乐。强烈推荐一波完整的运行视频。
# 跳动彩球文生视频制作指令
## 任务描述
请创建一个简短视频,由三个连续场景组成,每个场景展示不同颜色的背景和跳动的球。总时长不超过10秒,每个片段控制在3秒以内。
## 视频内容详细说明
### 镜头1
\```
生成一段不超过3秒的视频:纯红色背景上有一个蓝色球从画面底部向上弹跳两次。球体应有轻微的弹性变形和自然的物理运动。画面简洁干净,只有背景和球体。
\```
### 镜头2
\```
生成一段不超过3秒的视频:纯黄色背景上有一个红色球从画面底部向上弹跳两次。球体运动方式、弹性和物理特性与第一个镜头保持一致。画面同样简洁,只有背景和球体。
\```
### 镜头3
\```
生成一段不超过3秒的视频:纯蓝色背景上有一个黄色球从画面底部向上弹跳两次。球体运动方式、弹性和物理特性与前两个镜头保持一致。画面同样简洁,只有背景和球体。
\```
## 视频制作步骤
1. **生成各场景**
- 按照上述描述分别生成三个短视频片段
- 确保每个片段不超过3秒
- 保持所有场景的分辨率一致(建议1080p)
- 确保球体大小在三个场景中保持一致
2. **视频合成**
- 按顺序直接连接三个视频片段(红背景→黄背景→蓝背景)
- 不需要添加过渡效果,直接切换
- 确保衔接处无明显中断
3. **音频添加**
- 搜索并选择一段简短、活泼的背景音乐
- 音乐长度应与视频总长度匹配(约9秒)
- 建议使用无版权音乐库中的轻快节奏曲目
4. **最终输出**
- 视频格式:MP4
- 总时长:约9秒
请按照以上指令生成视频并提供最终成品。
OWL 同样是生成了对应代码没有写入文件,也没有下载或者生成对应长度的MP3音频,下面是我用Claude3.7修复后的结果,小球颜色有切换但是背景颜色没有,完成了一半。
已关注
关注
重播 分享 赞
关闭
观看更多
更多
退出全屏
切换到竖屏全屏退出全屏
卡尔的AI沃茨已关注
分享视频
,时长00:09
0/0
00:00/00:09
切换到横屏模式
继续播放
进度条,百分之0
播放
00:00
/
00:09
00:09
全屏
倍速播放中
0.5倍 0.75倍 1.0倍 1.5倍 2.0倍
超清 流畅
您的浏览器不支持 video 标签
继续观看
OpenManus、OWL真实测评,Manus的Agent护城河一碰就碎?
观看更多
转载
,
OpenManus、OWL真实测评,Manus的Agent护城河一碰就碎?
卡尔的AI沃茨已关注
分享点赞在看
已同步到看一看写下你的评论
到了 OpenManus 这里,又来了三次来回说自己是 Claude 而不是 OpenManus,且否认自己有工具调用能力,我盲猜了一把应该是 logs 日志的问题,OpenManus应该会读取之前的日志,所以当我把之前的日志清理之后会恢复生成运行了。
已关注
关注
重播 分享 赞
关闭
观看更多
更多
退出全屏
切换到竖屏全屏退出全屏
卡尔的AI沃茨已关注
分享视频
,时长00:09
0/0
00:00/00:09
切换到横屏模式
继续播放
进度条,百分之0
播放
00:00
/
00:09
00:09
全屏
倍速播放中
0.5倍 0.75倍 1.0倍 1.5倍 2.0倍
超清 流畅
您的浏览器不支持 video 标签
继续观看
OpenManus、OWL真实测评,Manus的Agent护城河一碰就碎?
观看更多
转载
,
OpenManus、OWL真实测评,Manus的Agent护城河一碰就碎?
卡尔的AI沃茨已关注
分享点赞在看
已同步到看一看写下你的评论
变聪明了之后,OpenManus采用曲线救国,用SVG和HTML完成了视频效果的展示,小球和背景颜色都有变化,也是没有音乐和没有视频文件,完整度也是一半一半。
问题四、请分析AR眼镜技术和市场的历年变化情况,分析2025年AR眼镜市场的详细走向,并且预测它的未来如何?需要参考对比一些等效的技术方案。
刚刚问了一个主体的专题搜索,现在再来一个宽泛的、有时间跨度的深度搜索问题。之前测评的时候,Manus 的信息搜索和汇总能力是差 OpenAI o1 deep research 一点的,这次发挥超水准了,没有再被网页卡住。
OWL这次一开始使用了视频下载和分析工具,但是没有成功,后续进行了两次搜索AR眼镜的历史发展
和AR眼镜的技术进步
,有意思的是还可以通过这两次搜索去对应的网页搜索历史版本。
这次 OpenManus 没有拉垮,第一轮就用模型生成了AR眼镜技术和市场分析报告
,输出直接给了中文,并给出了明确的结论。估计30步的执行是固定的,所以接下来2-29步就陷入死循环了,持续说明无法使用 PythonExecute、FileSaver、BrowserUseTool 和 Search等工具,并且不断重申自己是 Claude 而不是 OpenManus。这一点估计跟每一轮没有动态更新执行进度有关。
烧不动了,加上前期测试,快烧了我$100了。而且都要用Claude3.7辅助阅读和运行,有点心累。
这次测试我收集了大概二十多个 Manus 运行例子,目前可以粗略分为3类,代码类、信息搜索整理类、外部软件调用类。理论上说,通过调用 API,Manus 还可以完成图片生成和视频合并的操作,也就是我们这一瞬间想到的一句话生成完整AI视频
的离谱操作。
不过能完全依靠 API 的软件不多,普通软件调用因为需要登陆,OpenManus 和 OWL 都很容易被卡住。
期待后面能追加上合适的 GUI 界面吧。
在这篇文章收尾的时候,有人破解出了 Manus 虚拟机的代码,直接来说说结论:
-
Manus使用的是 Claude Sonnet 模型
-
配备了29个工具
-
使用多代理框架
-
使用了"browser_use"这个开源项目
写在最后
上面的结果输出的 log,
项目对应的版本,以及Manus具体的运行过程,
我也同样放在了之前的Manus链接里面,公众号后台发我Manus
就行了。
这时候我应该可以回答标题的疑问了,
OpenManus、OWL更多像是复刻了 Manus 思路的开源项目,它们都存在着一些不完美的地方。
并没有如同我测评前接受的信息一样,
Manus这套工作流没有护城河,都已经被复刻出来了的感觉。
虽然不足,但我还是很兴奋有更多的 Agent 项目出现,
这越来越证明,AI正在开启下一阶段,
而更棒的,即便是全新的阶段,依旧给更多普通人开放了使用空间。
还是那句话,
AI从不是精英适配,
而是人人可用。
@ 作者 / 卡尔