大模型中的 Reward Model:ORM、PRM、PPO、DPO对于一般分类、

大模型中的 Reward Model:ORM、PRM、PPO、DPO

原创 jhc888007 算法杂学搬砖工 2024年10月29日 23:07 北京

对于一般分类、抽取任务,简单的多次生成结果投票就能解决很多问题。但是对于生成 / 推理这种开放 / 复杂的任务,还需要 Reward Model 来帮助判断。

PRM vs ORM

ORM(Outcome Reward Model)即训练一个 Reward Model,判别大模型生成的多个结果哪个更好。

PRM(Process Reward Model)主要针对的是 ToT 一类的多步输出大模型输出,同样训练一个/若干个 Reward Model,然后每一步判别哪几个输出更好。

ORM 和 PRM 一方面可以在大模型输出的多个结果中选择更好的一个,更重要的是,判别结果可以某种损失的形式回传,优化大模型。

显然,PRM 的上限更高(ORM 甚至可能存在结果正确但过程不正确的情况),但同时要求 Reward Model 能够正确的判别每一步的结果,显然对 Reward Model 的要求更高。

DPO vs PPO

PPO(Proximal Policy Optimization)最初在 ChatGPT 的 RHLF 中使用,同样是有一个人工标注数据训练的 Reward Model,大模型生成多个结果后,经过 Reward Model 判断,通过强化学习的方式来使得大模型偏向更好的答案,远离更差的答案。

DPO(Direct Preference Optimization)模仿了 PPO 的方式,同样训练 Reward Model,大模型生成多个结果后,使用 Reward Model 判断优劣,然后好的作为训练集,以SFT 的方式训练。

PPO 和 DPO 的最大区别是 PPO 是强化学习的两阶段范式,先生成,再判别,再根据判别结果优化,但 DPO 其实是离线生产了一批正样本数据集,还是监督学习范式,所以 PPO 又被称为 On-policy,而 DPO 被称为 Off-policy。

效果上,自然 PPO 其实是更合理,天花板更高的,但实现成本也很高,但 DPO 相对实现成本就很简单。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值