昇腾MindSpeed大规模MoE训推共卡强化学习,后训练资源利用率提升40%

昇腾MindSpeed大规模MoE训推共卡强化学习,后训练资源利用率提升40%

昇腾AI开发者 2025年03月24日 17:35 广东

图片

图片

DeepSeek R1将模型训练推向基于强化学习的后训练新范式,让各行业也能快速构建行业高质量模型。后训练的核心主要在通过强化学习让模型涌现出自我验证、自我思考的长CoT(思维链)能力,让模型产生长CoT是后训练的推理任务,因此强化学习(RL)需要进行目标模型的训练和推理,而目标模型的推理和训练负载特征差异大,分离方案训练推理任务相互等待,资源利用率低。昇腾MindSpeed RL在后训练过程中采用训推共卡特性,让训练推理任务分时利用集群资源,降低训推切换时延和内存峰值,提升资源利用率和吞吐性能,是业界首个在大规模MoE模型RL训练上支持训推共卡。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值