万字回顾中国生成式AI大会!50+大咖演讲精华干货爆棚,来没来都值得收藏
原创 GenAICon 2025 智东西 2025年04月03日 19:51 河南
两天,超过50位产学研嘉宾密集输出高浓度、高质量的干货信息,深度解构DeepSeek引发的变革狂潮。
4月1日-2日,一场全场干货爆棚的生成式AI盛会,在北京圆满举行。
开年以来,DeepSeek的异军突起,改写了中西大模型竞争叙事。生成式AI似乎猛然冲进一个全新征程中,中国企业更是斗志昂扬地踊跃创新,不仅领衔AI开源盛世,还掀起了新一轮模型部署与AI应用研发热潮,在这千载难逢的历史机遇期全速冲锋。
为此,我们发起了一场聚焦前沿技术与产业趋势的春日AI聚会——2025中国生成式AI大会(北京站)。
大会以“大拐点 新征程”为主题,两天之内,超过50位产学研嘉宾密集输出高浓度、高质量的干货信息,深度解构DeepSeek引发的变革狂潮,全面展示覆盖深度推理模型、多模态模型与世界模型、AI Infra(AI基础设施)、AIGC应用、Agents(智能体)、具身智能等领域的生成式AI最新进展。
▲中国生成式AI大会主会场开幕式、GenAI应用论坛、大模型峰会、分会场技术研讨会、展区人流密集
本届大会主会场举办开幕式、GenAI应用论坛、大模型峰会,分会场举办3场以DeepSeek R1与推理、AI智能体、具身智能大模型为主题的技术研讨会,期间既有同频共振,又有激烈观点交锋,现场参会观众超过1500人。
展区亦是人头攒动,从早到晚充斥着热切的交流声,Alluxio、Zenlayer、DriveNets、澳鹏数据、晴数智慧、中昊芯英、GMI Cloud、焱融科技、英博数科、华为云、研惠通、新晧诚科技、枫清科技、科华数据、首都在线、清智图灵等16家企业带来最新技术产品展示。
这已经是智一科技旗下智猩猩、智东西共同发起中国生成式AI大会的第四届,也是AI青年学者密度最高的一届。自2023年以来,大会累计吸引了数千人线下参会,线上观看人次更是超过1000万,成为国内AI领域最具影响力的产业峰会之一。
▲联想集团Game of AI科普视频在大会展播:联想工厂制造控制塔MCT2.0,生成式AI在制造业首次落地
智一科技联合创始人、CEO龚伦常在致辞环节宣布:今年,中国生成式AI大会正式升级为“智领未来”北京人工智能系列品牌活动之一。
“智领未来”是北京市科委、中关村管委会打造的北京市人工智能领域的活动品牌。此外,同样作为“智领未来”北京人工智能系列品牌活动之一的中国AI算力峰会将于今年6月在北京举办。
龚伦常还预告了将于今年举办的多个主题会议:4月底,中国汽车智能化创新峰会将在上海车展期间同步举办;9月,全球AI芯片峰会将在上海举办;11月,中国具身智能机器人大会将在深圳举办。欢迎感兴趣的朋友们关注。
▲智一科技联合创始人、CEO龚伦常致辞
01.
开幕式:突破大模型预训练瓶颈,
为AI应用爆发扫清障碍
进入2025年,AI领域涌现哪些新关键词?慢思考推理技术如何缓解大模型预训练瓶颈?怎样让机器人操作交互像跳舞一样丝滑?Agents(智能体)落地企业需攻克哪些挑战?国产算力怎么解锁万卡集群难关?
在大会首日开幕式上,产学研嘉宾围绕深度推理模型、具身智能机器人、AI智能体、AI算力基础设施、AI应用,分享了对最新技术思路与推动落地的观察与思考。
1、人大赵鑫:慢思考推理技术如何缓解大模型预训练瓶颈?
中国人民大学高瓴人工智能学院教授赵鑫谈道,大模型本质上是一个条件概率生成模型,思维链会提升预测正确的可能性。
当前训练模型性能增长会出现边际效益递减,其中数据和算力是探索扩展法则的主要限制,这也是为何当下需要慢思考推理技术。
慢思考推理技术的基本思路是“搜索+学习”的结合,具体来看,包括基于多次采样的方法、基于树搜索的方法、基于SFT(监督微调)的方法、基于RL(强化学习)的方法。
赵鑫教授团队在慢思考技术方面进行了大量研究。在RL技术领域,找到可验证的训练数据非常重要,团队系统探索了类R1模型的复现方法。
推理模型本质上可以认为是一个具备逐步推理/动作规划的“大脑”,未来推理模型可能会深刻影响现有智能体的设计模式。
▲中国人民大学高瓴人工智能学院教授赵鑫
2、清华许华哲:如何让机器人的操作交互像跳舞一样“丝滑”?
清华大学交叉学院助理教授、博导、星海图联合创始人许华哲谈道,当前机器人做跳舞、跑步、扭秧歌这类事已经很娴熟了,有大量数据支撑,但在操作交互方面数据十分匮乏,还有很长的路要走。
解决数据难题,让机器人有触觉是非常关键的,这样数据才能更丰富,团队设计了仿真手套,可以让机器人同步人手的操作。
有了数据还不够,数据量也非常关键,为此,团队通过DemoGen的方式丰富数据量,借此机器人的泛化能力可以得到进一步提升。相比传统方式,通过DemoGen的方式获得数据的速度快了上万倍。
未来让机器人能够泛化地去做更多的柔性操作,是团队努力的方向。
▲清华大学交叉学院助理教授、博导、星海图联合创始人许华哲
3、PINE AI李博杰:AI原生团队是组织形态的一场重大变革
PINE AI联合创始人、首席科学家李博杰认为,AI Agent在爆火的同时,也面临着企业知识孤岛、GUI使用困难、缺少独立测试环境、无法长时间运行等问题。
要打造AI原生团队,让AI真正成为“数字员工”,需要为Agent打造类似开源社区的沟通文化,实现开放透明的信息共享,并配备AI友好的团队协作工具接口、完善的测试环境与测试用例,同时让每个员工都拥有AI助理。
从技术层面来看,未来Agent还需要在明晰需求、主动沟通、主动协作、长期记忆、自我反思回溯与高精度内部知识库搜索等方面实现突破,才能真正实现从工具到团队成员的转变。
▲PINE AI联合创始人、首席科学家李博杰
4、壁仞科技丁云帆:64卡4TB显存训练满血DeepSeek-V3,异构混训逐步迈向万卡集群
DeepSeek引爆了大模型落地元年。壁仞科技AI软件首席架构师丁云帆认为,大模型落地需要工程和算法的协同创新,数据是燃料,算法是引擎,算力是加速器。
壁仞科技目前有万卡集群整体解决方案和智算生态,希望通过软硬协同&算法与工程协同,系统性地破解大模型算力难题:硬件集群算力方面,壁仞科技自主原创了GPU芯片架构,引领Chiplet技术趋势;软件有效算力方面,有大模型训推一体平台,业界首次实现大模型训练自动弹性扩缩容。业界首创三级异步checkpoint,千卡集群千亿参数可以实现自动断点续训小于5分钟,大幅提升集群稳定性。
大规模分布式优化方面,壁仞科技针对国产GPU高效适配DeepSeek进行了一系列技术优化创新,64卡4096GB显存即可支持DeepSeek-V3满血版高效全参训练,而其他已公布方案至少需要256卡。
此外异构聚合算力方面,壁仞科技自主原创了异构GPU协同训练方案HGCT,支持4种及以上异构GPU协同训练同一个大模型,解决了异构混训的关键技术挑战,已实现数千卡规模混训,下一步将突破万卡混训。
▲壁仞科技AI软件首席架构师丁云帆
5、英诺天使基金王晟:AI应用爆发,需要新终端设备的出现
英诺天使基金合伙人王晟谈道,2023年是