数学界中的菲尔兹奖:“超越心智的界限,洞悉世界奥秘!”
原创 遇见数学 遇见数学 2025年04月08日 11:16 河南
菲尔兹奖是每四年在国际数学联盟(IMU)国际数学家大会上颁发给两到四名 40 岁以下数学家的奖项。这一奖项以加拿大数学家约翰·查尔斯·菲尔兹(John Charles Fields)的名字命名,他不仅是奖项的创立者,还亲自设计了奖牌并资助了奖金。
约翰·查尔斯·菲尔兹,1863年5月14日—1932年8月9日
菲尔兹奖被视为数学家可以获得的最高荣誉之一,常被描述为"数学的诺贝尔奖",尽管两者之间存在几个主要区别,包括颁奖频率、获奖人数、年龄限制、奖金数额和评选标准。根据 ARWU(世界大学学术排名)的年度学术卓越调查,菲尔兹奖一直被认为是全球数学领域的最高奖项,而在 IREG 于 2013-14 年进行的另一项声誉调查中,菲尔兹奖紧随阿贝尔奖(Abel Prize)之后,成为数学领域第二重要的国际奖项。
该奖项包括现金奖励,自 2006 年起,奖金为 15,000 加元。菲尔兹在设立该奖项、亲自设计奖牌和资助奖金方面发挥了重要作用,尽管他在奖项正式设立前就去世了,他的计划由约翰·莱顿·辛格(John Lighton Synge)监督完成。
菲尔兹奖首次颁发于 1936 年,授予芬兰数学家拉尔斯·阿尔福斯(Lars Ahlfors)和美国数学家杰西·道格拉斯(Jesse Douglas),并从 1950 年开始每四年颁发一次。其目的是认可和支持那些做出重大贡献的年轻数学研究者。2014 年,伊朗数学家玛丽亚姆·米尔扎哈尼(Maryam Mirzakhani)成为首位获得菲尔兹奖的女性。截至目前,共有 64 人获得过菲尔兹奖。
最近一批菲尔兹奖得主于 2022 年 7 月 5 日在芬兰赫尔辛基举行的在线活动中接受了奖项,活动进行了现场直播。该活动原计划在俄罗斯圣彼得堡举行,但由于 2022 年俄罗斯入侵乌克兰而改变了地点。
奖项条件
菲尔兹奖长期以来被视为数学领域最负盛名的奖项,常被描述为数学的诺贝尔奖。与诺贝尔奖不同,菲尔兹奖每四年颁发一次。菲尔兹奖还有年龄限制:获奖者必须在颁奖年度的 1 月 1 日前未满 40 岁。这一不满 40 岁的规定基于菲尔兹的愿望:"虽然奖项是对已完成工作的认可,但同时也旨在鼓励获奖者未来取得更多成就,并激励他人做出新的努力。"此外,一个人只能获得一次菲尔兹奖。
【遇见数学】:这一限制反映了数学这门学科的特点——许多数学家在相对年轻时就能做出最具创造性的工作。
自 1936 年首次颁发以来,截至 2022 年共有 64 人获得过该奖项。爱德华·威滕(Edward Witten)是至今唯一获奖的物理学家,其余获奖者均为数学博士。
菲尔兹奖得主名单
在菲尔兹奖的历史上,官方对获奖者的成就描述方式经历了一些变化。
在某些年份,官方会明确指出获奖者因哪些具体数学成就而获奖;而在其他年份,则没有给出这么详细的说明。不过,无论哪一届,国际数学家大会都会邀请知名数学家就每位获奖者的工作成果做专题报告,深入剖析其研究的价值和创新点。
【遇见数学】:菲尔兹奖表彰的数学工作展现了现代数学发展的全景。从数论到几何,从动力系统到拓扑学,这些获奖成果往往代表着各个领域的重大突破。很多研究在当时看似乎很抽象,但后来被证明具有深远的理论意义和广泛的实际应用。
关于历届获奖缘由的来源:
-
1958 年、1998 年及 2006 年以后:直接引用官方公布的获奖说明,这些说明通常清晰地概括了获奖者的主要贡献
-
1986 年之前的其他年份:主要参考三位数学史学者(阿尔伯斯、亚历山大森和里德)对大会相关学术报告的总结
-
1990 年、1994 年和 2002 年:直接引用大会学术报告中的部分内容
向上滑动阅览历届获奖得主
1936 年 挪威奥斯陆
-
拉尔斯·阿尔福斯(Lars Ahlfors):芬兰赫尔辛基大学(获奖时),美国哈佛大学(当前/最后) "授予奖牌,以表彰其在与整函数和亚纯函数的反函数的黎曼曲面相关的覆盖面研究。开辟了新的分析领域。"
-
杰西·道格拉斯(Jesse Douglas):美国麻省理工学院(获奖时),美国纽约城市学院(当前/最后) "对平台问题做出了重要贡献,该问题涉及寻找由某些固定边界连接和确定的最小曲面。"
1950 年 美国剑桥
-
洛朗·施瓦茨(Laurent Schwartz):法国南锡大学(获奖时),法国巴黎第七大学(当前/最后) "发展了分布理论,这是一种由理论物理学的狄拉克 δ 函数激发的广义函数新概念。"
-
阿特尔·塞尔贝格(Atle Selberg):美国高级研究院(获奖时),美国高级研究院(当前/最后) "发展了对维戈·布伦(Viggo Brun)筛法的推广;在黎曼 ζ 函数的零点方面取得了重要成果;给出了素数定理的初等证明(与 P. 埃尔德什(P. Erdős)合作),并将其推广到任意算术级数中的素数。"
1954 年 荷兰阿姆斯特丹
-
小平邦彦(Kunihiko Kodaira):美国普林斯顿大学、日本东京大学和美国高级研究院(获奖时),日本东京大学(当前/最后) "在调和积分理论及其在凯勒簇(Kählerian)及更具体地在代数簇方面的众多应用方面取得了重要成果。他通过层凝聚(sheaf cohomology)证明了这些簇是霍奇流形(Hodge manifolds)。"
-
让-皮埃尔·塞尔(Jean-Pierre Serre):法国南锡大学(获奖时),法国法兰西学院(当前/最后) "在球面的同伦群方面取得了重要成果,特别是在使用谱序列方法方面。以层的术语重新表述并扩展了复变量理论的一些主要结果。"
1958 年 英国爱丁堡
-
克劳斯·罗特(Klaus Roth):英国伦敦大学学院(获奖时),英国帝国理工学院(当前/最后) "因解决了数论中的一个著名问题,即确定图伊-西格尔(Thue-Siegel)不等式中的精确指数"
-
勒内·托姆(René Thom):法国斯特拉斯堡大学(获奖时),法国高等科学研究所(当前/最后) "因创立了'配边理论'(Cobordisme),该理论在短短几年的存在时间内,已经导致了对可微流形拓扑的最深刻的见解。"
1962 年 瑞典斯德哥尔摩
-
拉尔斯·霍尔曼德(Lars Hörmander):瑞典斯德哥尔摩大学(获奖时),瑞典隆德大学(当前/最后) "在偏微分方程领域工作。特别是对线性微分算子的一般理论做出了贡献。这些问题可以追溯到希尔伯特(Hilbert)在 1900 年大会上提出的问题之一。"
-
约翰·米尔诺(John Milnor):美国普林斯顿大学(获奖时),美国石溪大学(当前/最后) "证明了 7 维球面可以具有几种微分结构;这导致了微分拓扑领域的创建。"
1966 年 苏联莫斯科
-
迈克尔·阿蒂亚(Michael Atiyah):英国牛津大学(获奖时),英国爱丁堡大学(当前/最后) "与希尔策布鲁赫(Hirzebruch)在 K 理论中进行联合工作;与辛格(Singer)共同证明了复流形上椭圆算子的指标定理;与波特(Bott)合作证明了与'勒夫谢茨公式'相关的不动点定理。"
-
保罗·科恩(Paul Cohen):美国斯坦福大学(获奖时),美国斯坦福大学(当前/最后) "使用称为'强制'(forcing)的技术证明了集合论中选择公理和广义连续统假设的独立性。后者问题是希尔伯特 1900 年大会提出的第一个问题。"
-
亚历山大·格罗滕迪克(Alexander Grothendieck):法国高等科学研究所(获奖时),法国国家科学研究中心(当前/最后) "在韦伊(Weil)和扎里斯基(Zariski)工作的基础上,在代数几何学方面取得了根本性进展。他引入了 K 理论(格罗滕迪克群和环)的思想。在他著名的'东北论文'中彻底革新了同调代数。"
-
斯蒂芬·斯梅尔(Stephen Smale):美国加州大学伯克利分校(获奖时),中国香港城市大学(当前/最后) "在微分拓扑领域工作,证明了维度 的广义庞加莱猜想:每个与 n 维球面同伦等价的闭 n 维流形都与之同胚。引入了把手法(handle-bodies)来解决这个问题和相关问题。"
1970 年 法国尼斯
-
艾伦·贝克(Alan Baker):英国剑桥大学(获奖时),英国剑桥三一学院(当前/最后) "推广了盖尔方德-施奈德定理(希尔伯特第七个问题的解)。从这项工作中,他产生了之前未识别的超越数。"
-
广中平祐(Heisuke Hironaka):美国哈佛大学(获奖时),日本京都大学(当前/最后) "推广了扎里斯基的工作,扎里斯基已经证明了维度 ≤3 的关于代数簇上奇点消解的定理。广中证明了任何维度的结果。"
-
谢尔盖·诺维科夫(Sergei Novikov):苏联莫斯科国立大学(获奖时),俄罗斯斯捷克洛夫数学研究所、俄罗斯莫斯科国立大学、美国马里兰大学帕克分校(当前/最后) "在拓扑学方面取得了重要进展,最著名的是他证明了可微流形的庞特里亚金类(Pontryagin classes)的拓扑不变性。他的工作包括对托姆空间(Thom spaces)的上同调和同伦的研究。"
-
约翰·G·汤普森(John G. Thompson):英国剑桥大学(获奖时),英国剑桥大学、美国佛罗里达大学(当前/最后) "与 W. 法伊特(W. Feit)共同证明了所有非循环有限单群都有偶数阶。汤普森对这项工作的扩展确定了最小单有限群,即那些适当子群是可解的单有限群。"
1974 年 加拿大温哥华
-
恩里科·邦别里(Enrico Bombieri):意大利比萨大学(获奖时),美国高级研究院(当前/最后) "在素数、单叶函数和局部毕伯巴赫猜想、多复变函数理论以及偏微分方程和最小曲面理论方面做出了重大贡献——特别是对高维伯恩斯坦问题的解决。"
-
大卫·芒福德(David Mumford):美国哈佛大学(获奖时),美国布朗大学(当前/最后) "对模流形的存在和结构问题做出了贡献,模流形的点参数化了某种几何对象的同构类。还对代数曲面理论做出了几项重要贡献。"
1978 年 芬兰赫尔辛基
-
皮埃尔·德利涅(Pierre Deligne):法国高等科学研究所(获奖时),美国高级研究院(当前/最后) "给出了三个韦伊猜想的解,这些猜想涉及黎曼假设向有限域的推广。他的工作在很大程度上统一了代数几何和代数数论。"
-
查尔斯·费弗曼(Charles Fefferman):美国普林斯顿大学(获奖时),美国普林斯顿大学(当前/最后) "通过找到经典(低维)结果的正确推广,为多维复分析的研究提供了几项创新。"
-
格里戈里·马尔古利斯(Grigory Margulis):苏联莫斯科国立大学(获奖时),美国耶鲁大学(当前/最后) "对李群结构进行了创新分析。他的工作属于组合学、微分几何、遍历理论、动力系统和李群。"
-
丹尼尔·奎伦(Daniel Quillen):美国麻省理工学院(获奖时),英国牛津大学(当前/最后) "是高代数 K 理论的主要架构师,这是一种新工具,成功地使用几何和拓扑方法和思想来表述和解决代数中的主要问题,特别是环论和模论。"
1982 年 波兰华沙
-
阿兰·康恩(Alain Connes):法国高等科学研究所(获奖时),法国高等科学研究所、法国法兰西学院、美国俄亥俄州立大学(当前/最后) "对算子代数理论做出了贡献,特别是 III 型因子的一般分类和结构定理、超有限因子的自同构分类、内射因子的分类,以及 C*代数理论在叶状结构和一般微分几何中的应用。"
-
威廉·瑟斯顿(William Thurston):美国普林斯顿大学(获奖时),美国康奈尔大学(当前/最后) "彻底革新了 2 维和 3 维拓扑的研究,展示了分析、拓扑和几何之间的相互作用。提出了一个非常大类的闭 3 维流形具有双曲结构的想法。"
-
丘成桐(Shing-Tung Yau):美国高级研究院(获奖时),中国清华大学(当前/最后) "在微分方程、代数几何中的卡拉比猜想、广义相对论的正质量猜想以及实复蒙日-安培方程方面做出了贡献。"
1986 年 美国伯克利
-
西蒙·唐纳森(Simon Donaldson):英国牛津大学(获奖时),英国帝国理工学院、美国石溪大学(当前/最后) "主要因其在四维流形拓扑方面的工作获得奖牌,特别是表明欧几里得四维空间存在与通常结构不同的微分结构。"
-
格尔德·法尔廷斯(Gerd Faltings):美国普林斯顿大学(获奖时),德国马克斯·普朗克数学研究所(当前/最后) "使用算术代数几何方法,主要因其对莫德尔猜想的证明而获得奖牌。"
-
迈克尔·弗里德曼(Michael Freedman):美国加州大学圣地亚哥分校(获奖时),美国微软 Station Q(当前/最后) "为四维流形的拓扑分析开发了新方法。他的成果之一是证明了四维庞加莱猜想。"
1990 年 日本京都
-
弗拉基米尔·德林费尔德(Vladimir Drinfeld):苏联 B·韦尔金低温物理与工程研究所(获奖时),美国芝加哥大学(当前/最后) "德林费尔德在最近十年的主要关注是朗兰兹纲领和量子群。在这两个领域,德林费尔德的工作构成了决定性突破,并引发了大量研究。"
-
沃恩·琼斯(Vaughan Jones):美国加州大学伯克利分校(获奖时),美国加州大学伯克利分校、美国范德比尔特大学(当前/最后) "琼斯发现了冯·诺依曼代数与几何拓扑之间的惊人关系。因此,他为 3 空间中的结和链找到了新的多项式不变量。"
-
森重文(Shigefumi Mori):日本京都大学(获奖时),日本京都大学(当前/最后) "最近十年左右代数几何学中最深刻和令人兴奋的发展是[...]与三维代数簇分类问题相关的森计划。1979 年初,森为代数几何学带来了全新的兴奋,即他对哈茨霍恩猜想的证明。"
-
爱德华·威滕(Edward Witten):美国高级研究院(获奖时),美国高级研究院(当前/最后) "他一次又一次地以物理洞察力的巧妙应用惊讶了数学界,这些应用导致了新的深刻数学定理。"
1994 年 瑞士苏黎世
-
让·布尔甘(Jean Bourgain):法国高等科学研究所(获奖时),美国高级研究院(当前/最后) "布尔甘的工作涉及数学分析的几个中心主题:巴拿赫空间的几何、高维凸性、调和分析、遍历理论,最后是数学物理中的非线性偏微分方程。"
-
皮埃尔-路易·利翁(Pierre-Louis Lions):法国巴黎第九大学(获奖时),法国法兰西学院、法国巴黎综合理工学院(当前/最后) "他的贡献涵盖了多个领域,从概率论到偏微分方程(PDEs)。在 PDE 领域,他在非线性方程中做了一些漂亮的工作。他选择的问题总是由应用驱动的。"
-
让-克里斯托夫·约科兹(Jean-Christophe Yoccoz):法国巴黎-南大学(获奖时),法国法兰西学院(当前/最后) "约科兹得到了布鲁诺定理的一个非常有启发性的证明,并且他能够证明其逆命题[...]帕利斯和约科兹获得了莫尔斯-斯梅尔微分同胚的完整 共轭不变量系统。"
-
叶菲姆·泽尔曼诺夫(Efim Zelmanov):美国威斯康星-麦迪逊大学、美国芝加哥大学(获奖时),俄罗斯斯捷克洛夫数学研究所、美国加州大学圣地亚哥分校(当前/最后) "因解决了有限伯恩赛德问题。"
1998 年 德国柏林
-
理查德·博切尔兹(Richard Borcherds):美国加州大学伯克利分校、英国剑桥大学(获奖时),美国加州大学伯克利分校(当前/最后) "因其对代数、自守形式理论和数学物理的贡献,包括引入顶点代数和博切尔兹李代数、证明康威-诺顿月光猜想以及发现新类型的自守无穷乘积。"
-
蒂莫西·高尔斯(Timothy Gowers):英国剑桥大学(获奖时),英国剑桥大学(当前/最后) "因其对函数分析和组合学的贡献,发展了无限维几何的新视角,包括解决巴拿赫的两个问题和发现所谓的高尔斯二分法:每个无限维巴拿赫空间要么包含具有许多对称性的子空间(在技术上,具有无条件基),要么包含其上每个算子都是指标为零的弗雷德霍姆算子的子空间。"
-
马克西姆·孔采维奇(Maxim Kontsevich):法国高等科学研究所、美国罗格斯大学(获奖时),法国高等科学研究所、美国罗格斯大学(当前/最后) "因其对代数几何、拓扑和数学物理的贡献,包括证明维腾关于稳定曲线模空间中交点数的猜想、构造结的普适瓦西里耶夫不变量以及泊松流形的形式量子化。"
-
柯蒂斯·T·麦克马伦(Curtis T. McMullen):美国哈佛大学(获奖时),美国哈佛大学(当前/最后) "因其对全纯动力学理论和三维流形几何化的贡献,包括证明关于尖点在泰希米勒空间边界中密集的伯斯猜想,以及克拉的 θ 函数猜想。"
2002 年 中国北京
-
洛朗·拉福格(Laurent Lafforgue):法国高等科学研究所(获奖时),法国高等科学研究所(当前/最后) "洛朗·拉福格获得菲尔兹奖,是因为他证明了正特征函数域上完整线性群 () 的朗兰兹对应。"
-
弗拉基米尔·沃埃沃茨基(Vladimir Voevodsky):美国高级研究院(获奖时),美国高级研究院(当前/最后) "他定义并发展了动机上同调和 -同伦理论,为描述代数簇的许多新上同调理论提供了框架;他证明了关于域的 K 理论的米尔诺猜想。"
2006 年 西班牙马德里
-
安德烈·奥昆科夫(Andrei Okounkov):美国普林斯顿大学(获奖时),美国哥伦比亚大学、美国加州大学伯克利分校(当前/最后) "因其在概率论、表示论和代数几何学之间架起桥梁的贡献。"
-
格里戈里·佩雷尔曼(Grigori Perelman)(拒绝):无(获奖时),俄罗斯科学院斯捷克洛夫数学研究所圣彼得堡分部(当前/最后) "因其对几何学的贡献和对里奇流的分析和几何结构的革命性见解。"
-
陶哲轩(Terence Tao):美国加州大学洛杉矶分校(获奖时),美国加州大学洛杉矶分校(当前/最后) "因其对偏微分方程、组合学、调和分析和加性数论的贡献。"
-
文德林·维尔纳(Wendelin Werner):法国巴黎-南大学(获奖时),瑞士苏黎世联邦理工学院(当前/最后) "因其对随机勒夫纳演化、二维布朗运动的几何和共形场论发展的贡献。"
2010 年 印度海德拉巴
-
埃隆·林登施特劳斯(Elon Lindenstrauss):以色列耶路撒冷希伯来大学、美国普林斯顿大学(获奖时),以色列耶路撒冷希伯来大学(当前/最后) "因其在遍历理论中的测度刚性结果及其在数论中的应用。"
-
吴宝珠(Ngô Bảo Châu):法国巴黎-南大学、美国高级研究院(获奖时),美国芝加哥大学、美国高级研究院(当前/最后) "因其通过引入新的代数几何方法证明了自守形式理论中的基本引理。"
-
斯坦尼斯拉夫·斯米尔诺夫(Stanislav Smirnov):瑞士日内瓦大学(获奖时),瑞士日内瓦大学、俄罗斯圣彼得堡国立大学(当前/最后) "因其证明了统计物理学中渗流和平面伊辛模型的共形不变性。"
-
塞德里克·维拉尼(Cédric Villani):法国里昂高等师范学校、法国亨利·庞加莱研究所(获奖时),法国里昂大学、法国亨利·庞加莱研究所(当前/最后) "因其对非线性朗道阻尼和玻尔兹曼方程向平衡态收敛的证明。"
2014 年 韩国首尔
-
阿图尔·阿维拉(Artur Avila):法国巴黎第七大学、法国国家科学研究中心、巴西纯粹与应用数学研究所(获奖时),瑞士苏黎世大学、巴西纯粹与应用数学研究所(当前/最后) "因其对动力系统理论的深刻贡献,这些贡献改变了该领域的面貌,使用重整化这一强大思想作为统一原则。"
-
曼朱尔·巴尔加瓦(Manjul Bhargava):美国普林斯顿大学(获奖时),美国普林斯顿大学(当前/最后) "因其在数的几何学中发展了强大的新方法,他将这些方法应用于计算小秩环并限制椭圆曲线的平均秩。"
-
马丁·海雷尔(Martin Hairer):英国华威大学(获奖时),英国帝国理工学院(当前/最后) "因其对随机偏微分方程理论的杰出贡献,特别是为此类方程创建了正则结构理论。"
-
玛丽亚姆·米尔扎哈尼(Maryam Mirzakhani):美国斯坦福大学(获奖时),美国斯坦福大学(当前/最后) "因其对黎曼曲面及其模空间的动力学和几何学的杰出贡献。"
2018 年 巴西里约热内卢
-
考切尔·比尔卡尔(Caucher Birkar):英国剑桥大学(获奖时),英国剑桥大学(当前/最后) "因证明了福利亚诺簇的有界性以及对极小模型计划的贡献。"
-
亚历西奥·菲加利(Alessio Figalli):瑞士苏黎世联邦理工学院(获奖时),瑞士苏黎世联邦理工学院(当前/最后) "因对最优传输理论及其在偏微分方程、度量几何和概率中的应用的贡献。"
-
彼得·绍尔泽(Peter Scholze):德国波恩大学(获奖时),德国波恩大学(当前/最后) "因其对 p-进域上的算术代数几何的变革。"
-
阿克谢·文卡泰什(Akshay Venkatesh):美国斯坦福大学(获奖时),美国高级研究院(当前/最后) "因其综合了解析数论、同质动力学、拓扑和表示论,解决了诸如算术对象等分布等长期存在的问题。"
2022 年 芬兰赫尔辛基
-
雨果·杜米尼尔-科潘(Hugo Duminil-Copin):法国高等科学研究所、瑞士日内瓦大学(获奖时),法国高等科学研究所、瑞士日内瓦大学(当前/最后) "因解决了统计物理相变概率理论中的长期存在问题,特别是在三维和四维中。"
-
许埈(June Huh):美国普林斯顿大学(获奖时),美国普林斯顿大学(当前/最后) "因将霍奇理论思想引入组合学,证明了几何格的道林-威尔逊猜想,证明了拟阵的赫伦-罗塔-威尔士猜想,发展了洛伦兹多项式理论,以及证明了强梅森猜想。"
-
詹姆斯·梅纳德(James Maynard):英国牛津大学(获奖时),英国牛津大学(当前/最后) "因对解析数论的贡献,这些贡献导致了对素数结构和丢番图逼近理解的重大进展。"
-
玛丽娜·维亚佐夫斯卡(Maryna Viazovska):瑞士洛桑联邦理工学院(获奖时),瑞士洛桑联邦理工学院(当前/最后) "因证明 格提供了 8 维中相同球体的最密堆积,以及对相关极值问题和傅里叶分析中的插值问题的进一步贡献。"
里程碑
该奖牌首次颁发于 1936 年,授予芬兰数学家拉尔斯·阿尔福斯和美国数学家杰西·道格拉斯,并从 1950 年开始每四年颁发一次。其目的是认可和支持那些做出重大贡献的年轻数学研究者。
1954 年,让-皮埃尔·塞尔以 27 岁的年龄成为菲尔兹奖最年轻的获奖者。他至今保持这一纪录。
1966 年,亚历山大·格罗滕迪克抵制在莫斯科举行的国际数学家大会,以抗议苏联在东欧进行的军事行动。高等科学研究所的创始人和主任莱昂·莫查内出席并代表格罗滕迪克接受了菲尔兹奖牌。
1970 年,由于苏联政府的限制,谢尔盖·诺维科夫无法前往尼斯参加大会领取奖牌。
1978 年,由于苏联政府的限制,格里戈里·马尔古利斯无法前往赫尔辛基参加大会领取奖牌。雅克·蒂茨代表他接受了奖项,并在致辞中说:"我无法表达内心的深深失望——毫无疑问这里的许多人都有同感——对马尔古利斯缺席这个仪式。考虑到赫尔辛基这座城市的象征意义,我确实有理由希望自己最终有机会见到一位我只通过其作品了解的数学家,对他我怀有最大的敬意和崇拜。"
1982 年,大会原定在华沙举行,但由于 1981 年 12 月 13 日波兰实施军事管制而不得不推迟到第二年。奖项在当年早些时候的国际数学联盟第九届大会上宣布,并在 1983 年华沙大会上颁发。
1990 年,爱德华·威滕成为首位获得该奖项的物理学家。
1998 年,在国际数学家大会上,菲尔兹奖委员会主席尤里·I·马宁向安德鲁·怀尔斯颁发了首个国际数学联盟银牌,以表彰他对费马最后定理的证明。唐·扎吉尔将这块银牌称为"量子化的菲尔兹奖牌"。关于这个奖项的记录经常提到,怀尔斯在获奖时已超过菲尔兹奖的年龄限制。尽管怀尔斯在 1994 年略微超过了年龄限制,但他被认为是获得该奖牌的热门人选;然而,1993 年在证明中发现了留有缺陷(后来由泰勒和怀尔斯解决)。
2006 年,证明了庞加莱猜想的格里戈里·佩雷尔曼拒绝了他的菲尔兹奖牌,也没有出席大会。
2014 年,玛丽亚姆·米尔扎哈尼成为首位获得菲尔兹奖的伊朗人以及首位女性,阿图尔·阿维拉成为首位南美人,曼朱尔·巴尔加瓦成为首位印度血统的获奖者。
2022 年,玛丽娜·维亚佐夫斯卡成为首位获得菲尔兹奖的乌克兰人,许埈成为首位韩国血统的获奖者。
奖牌的设计
奖牌由加拿大雕塑家 R. 泰特·麦肯齐设计。它由 14K 金制成,直径为 63.5 毫米,重 169 克,蕴含丰富的数学文化意义:
正面刻有古希腊数学大师阿基米德的肖像,环头像镌刻着一句出自公元 1 世纪罗马诗人马尼利乌斯的拉丁文箴言:
"Transire suum pectus mundoque potiri"
这句话可译为"超越心智的界限,洞悉世界奥秘",生动地表达了数学研究的终极意义——通过抽象思维的力量理解和把握宇宙的规律。这一格言完美诠释了数学作为人类认知工具的强大力量。
肖像左侧有设计者的签名:字母“RT”巧妙组合成“M”,下面还有罗马数字标示的年份"1933"(MCNXXXIII),这是奖项筹备的年份。有趣的是,这一罗马数字实际上包含一个错误——正确的写法应是 MCMXXXIII(1000+900+30+3)。这个微小的人为错误在代表精确性的数学奖项上显得颇具讽刺意味,却也为后人增加了一个趣事。
肖像右侧,还刻有阿基米德的名字,用古希腊字母书写:
ΑΡΧΙΜΗΔΟΥΣ(Archimedes)
奖牌背面刻有铭文:"Congregati ex toto orbe mathematici ob scripta insignia tribuere"("来自全世界的数学家因杰出著作而授予此奖")。背景是阿基米德墓的图案,上面刻有他最为自豪的定理——球体与外接圆柱体积之比为 2:3,这是他要求刻在墓碑上的数学成果。
奖牌的边缘上则会精细雕刻获奖者的姓名,这是奖牌的个性化部分。
女性获奖者
菲尔兹奖有两位女性获奖者,2014 年的伊朗人玛丽亚姆·米尔扎哈尼和 2022 年的乌克兰人玛丽娜·维亚佐夫斯卡。
在流行文化中
菲尔兹奖因 1997 年电影《心灵捕手》(Good Will Hunting)中的引用而在流行文化中获得了更多认可。在电影中,杰拉尔德·兰博(斯特兰·斯卡斯加德饰演)是麻省理工学院的一位教授,在故事情节发生前获得了这个奖项。电影中对该奖项的提及旨在传达其在数学领域的威望。
原内容及图片源自维基百科,遵循CC BY-SA 4.0协议。
原文:en.wikipedia.org/wiki/Fields_Medal
翻译:【遇见数学】译制,并补充部分内容/图片