冯诺依曼架构该退休了,沙特IT部长斯坦福大学讲座:AI基建如何避免“建成即落后”,两千兆瓦算力中心难在哪?三种AI模式的典型场景
原创 JOJO白金之星 高飞的电子替身 2025年05月14日 21:54 北京
今天大家看到的这期内容比较特殊,谈的不是一家公司的AI战略,而是一个国家的技术思路。内容来自沙特阿拉伯通信与信息技术部长阿卜杜拉·阿勒斯瓦哈(Abdullah bin Amer Alswaha)今年春天在斯坦福大学CS153“Infra @Scale”课程的一次讲座。大家不要觉得他是官员,就觉得我要发一篇政策解读文章,完全不是。
因为阿勒斯瓦哈曾经是思科(Cisco)的一名工程师,所以他非常科班,讲座100%硬核。他不仅将20年前互联网泡沫时期的网络基础设施建设,与当前的AI热潮做了类比。而且还花了很多篇幅分析了AI基础设施的瓶颈:冯·诺依曼架构的局限性。相信诸位看完,一定会有所收获,特别是如果对AI算力这个话题感兴趣的话。
当然,之所以发这期内容还有一个背景,那就是这周特朗普在访问沙特,AI成了美沙合作的重头戏。我用马斯克的Grok做了一下总结,马斯克也随访了。
双方一共签署了总额6000亿美元的战略协议,其中AI相关投资占比很高,其中:沙特新成立的AI公司Humain与英伟达、AMD达成重大合作,英伟达将向Humain提供数十万枚高端AI芯片,首批包括1.8万枚最新“Blackwell”芯片,用于建设500兆瓦的AI数据中心,助力沙特打造全球AI计算枢纽。AMD则与Humain启动了价值100亿美元的合作,涵盖硬件供应和AI云平台开发。
此外,沙特DataVolt计划在美国投资200亿美元建设AI数据中心,谷歌、甲骨文、Salesforce等美国企业也承诺在美沙两国投入800亿美元,重点支持AI和云计算技术。
这些交易又直接呼应了沙特的“2030愿景”。
沙特“2030愿景”是2016年启动的全国战略,目标是摆脱对石油的依赖,推动经济多元化和社会现代化。它主要围绕三大方向:1、建设更有活力的社会;2、发展繁荣的经济;3、打造高效的政府。
核心措施则包括:
大力发展旅游、制造和可再生能源等非石油产业,推出NEOM智能城市和红海旅游区等大项目,吸引外资,同时提升私营部门的经济贡献到65%,并让更多女性参与工作(目标30%)。
而Humain就是“2030愿景”经济多元化战略的抓手之一,由公共投资基金(PIF)全资拥有,目的是在将沙特打造为全球AI枢纽。前Aramco Digital和Rakuten高管Tareq Amin担任CEO。公司业务覆盖AI全产业链,包括建设下一代数据中心、提供高性能AI基础设施和云服务,以及开发全球领先的多模态阿拉伯语大语言模型(LLM)。
DataVolt则是沙特一家数据中心开发商,专注于可持续AI基础设施建设,同样服务于“2030愿景”。旗舰项目是与NEOM合作的Oxagon工业区1.5吉瓦净零AI工厂,首期投资50亿美元,计划2028年运营,全部采用风能和太阳能等可再生能源,结合先进冷却技术,应对生成式AI的巨大能耗需求。
一、 历史的回响:从互联网浪潮看AI时代的硬件与软件价值链
阿勒斯瓦哈在讲座一开始,首先把视角拉回到20年前,他以自己在思科担任工程师的亲身经历,对比了互联网时代初期与当前AI浪潮的相似之处。他回忆道,当年思科作为全球市值最高的公司之一,致力于推动网络路由和交换设备的普及 。然而,最初市场对这些硬件将如何催生具体的应用,以及如何在各行各业普及,并没有清晰的认知。直到远程医疗、远程教育、数字政府(GovTech)等创新应用场景的出现,网络技术才真正释放出其改变工作、生活、娱乐和学习方式的巨大潜力 。
阿勒斯瓦哈认为,这段历史的启示是深刻的。当前AI领域也存在大量关于硬件,特别是GPU的炒作和兴奋情绪 。虽然硬件是基础,是推动行业变革的关键解锁环节之一,但真正的价值创造大头往往在软件和服务层。他引用数据称,在互联网时代,硬件上每产生1美元的价值,软件和服务层面就能产生10到20美元的价值。这一规律在当前的生成式AI(Gentek AI)领域似乎也正在重演,其在各行各业的渗透和应用扩散,才是真正创造巨大差异化价值的关键 。
因此,AI时代的一个重要信号是:要超越对硬件本身的迷恋,更要关注AI技术如何与具体的行业应用结合,如何通过软件和服务创新,解决实际问题,创造更大的经济和社会效益。
二、 算力基石的挑战与突破:能源效率与下一代计算架构的呼唤
讲座的很大篇幅是关于AI基础设施面临的核心技术瓶颈的。阿勒斯瓦哈说,作为全球能源领导者,沙特深知能源效率对于大规模计算的重要性,所以对现场学生了抛出了亟待解决的几大技术难题。
1、首当其冲的是计算架构的能效问题。当前主流的CPU和GPU大多遵循冯·诺依曼架构,即计算单元和存储单元分离,数据和指令集需要从内存中频繁提取 。这种分离导致了巨大的能效损失,因为每一次内存调用都会消耗皮焦耳级的能量,当调用次数达到数十亿级别时,累积的能耗就非常可观,甚至达到瓦特级别 。更进一步,调用固态存储(SSD)的能耗是内存的10倍,而涉及到互联(interconnect)操作时,能耗更是成倍增加 。因此,部长强调,如何设计出下一代计算架构,最大限度地减少不必要的数据搬运,是工程师们面临的首要挑战 。
2、其次是硅基芯片架构的局限性。例如,为了区分高低电平(逻辑上的1和0),需要施加的电压范围有限,这限制了其能效的提升空间 。阿勒斯瓦哈提出,业界需要向化合物半导体(compound semiconductors)转型,例如从硅(Silicon)转向氮化镓(Gallium Nitride, GaN)。
氮化镓拥有更大的禁带宽度(band gap),能够实现更快的开关速度,减少漏电流,这好比将容易漏水的橡胶阀门升级为开关迅速的金属阀门 。他坚信,在化合物半导体领域的突破,将为AI计算带来显著的能效提升,并孕育出下一代独角兽乃至十角兽公司 。
因此,设计全新的、高能效的计算架构,不仅仅是技术上的追求,更是关乎AI技术可持续发展的关键。沙特愿意投入数十亿美元支持相关领域的初创企业和基金,期待斯坦福的学术力量能在此领域做出颠覆性的贡献 。
三、 突破“内存墙”与互联瓶颈:架构创新时不我待
在探讨了计算单元的能效之后,他将焦点转向了AI系统中的另外两大瓶颈:内存和互联。阿勒斯瓦哈指出,当前GPU、NPU(神经网络处理单元)和LPU(语言处理单元)成本的40%来自于内存,特别是高带宽内存(HBM)。斯坦福大学早年提出的“内存墙”(memory wall)概念,精准地预言了这一挑战:过去20年,依据摩尔定律,晶体管数量和理论算力(TFlops)实现了约6万倍的增长,但内存带宽和互联速率的增长却远远滞后,大约每两年仅增长1.4到1.7倍。这种不平衡的发展,为AI系统的整体性能提升带来了巨大障碍。
为了应对内存访问的挑战,业界探索了多种内存架构原型,包括片上内存(on the chip)、近芯片内存(next to the chip)和芯片旁内存(on the side of the chip)。部长提到了Groq公司(这是一个AI推理芯片初创公司,沙特投了15亿美元),其创始人Jonathan Ross在语言处理单元(LPU)方面取得了显著成就,利用SRAM(静态随机存取存储器)实现了极快的文本处理速度,但这主要适用于文本处理。
沙特同时也在与高通等公司合作,探索如何在神经处理单元(NPU)中更好地利用DRAM(动态随机存取存储器);并与英伟达、AMD等公司合作,通过HBM架构调用固态存储 。
然而,他强调,彻底摆脱冯·诺依曼架构对内存的依赖,寻求全新的内存架构方案,才是根本之道。
紧随内存之后的是互联技术的瓶颈。阿勒斯瓦哈回忆起上世纪90年代他参与InfiniBand技术研发的经历(这位部长干过的技术工作可真多),时至今日,InfiniBand仍在广泛使用,但光子AI架构(photonic AI architectures)的发展却显得滞后。他指出,每一次光电转换(optical to electrical)都会带来能量损失和信号泄露,这限制了大规模AI集群的扩展效率 。因此,在半导体发展、内存架构和互联架构这三大领域,都蕴藏着未来百亿甚至千亿美金的市场机遇,等待着新一代创新者去发掘和开拓。这些技术难题的解决,将直接决定AI技术能否真正实现规模化部署和普惠应用。
四、 数据中心能效的“隐形税收”:沙特寻求极致优化的雄心
除了芯片层面的能效挑战,阿勒斯瓦哈还将视野拓展到数据中心整体的能源管理。他提到沙特目前正在建设1.5到2千兆瓦(Gigawatts)的计算能力 ,这是一个巨大的工程。然而,一个严峻的现实是,输送到数据中心的电力,并非全部都能用于GPU的有效计算。他将其形容为一种“税收”(tax):大约50%的电力在抵达GPU之前就被消耗掉了 。
具体来说,电力首先需要从高压降到低压,这个转换过程就会产生损耗。然后是冷却系统,包括液冷、浸没式冷却等,这些都是耗能大户 。此外,网络设备、存储设备以及其他辅助系统也都需要消耗电力 。部长以一个形象的例子说明:如果建设一个1千兆瓦的数据中心,可能有100兆瓦会损耗在电压转换上,之后还要分配给冷却、网络和存储等。这意味着,为了让GPU获得所需的计算电力,实际需要供应远超其额定功率的电力。
沙特的目标是将尽可能多的电力直接输送给GPU,因为GPU是整个系统中成本最高、也最核心的部分。他透露,一个数据中心的外壳(shell,不含计算设备)的建设成本大约是每兆瓦800万到1200万美元;而一旦配置上计算设备(如Groq、SambaNova、英伟达或AMD的芯片),成本则会跃升至每兆瓦2000万到3000万美元。
这种对能效的极致追求,体现了沙特作为能源国家的清醒认识和长远规划。他们期待斯坦福的毕业生能够设计出创新的计算架构和数据中心方案,最大限度地减少电力在传输和辅助系统中的损耗,确保每一瓦电力都能发挥最大价值。这不仅关乎成本效益,更关乎AI产业的可持续发展和环境保护。
五、 技术落地与价值创造:从实验室到GDP的最后一公里
在深入探讨了AI基础设施的硬件挑战之后,讲座又谈到了技术的采纳与扩散(adoption and diffusion)。这也是我近期特别感兴趣的话题,强烈推荐一下E.M.罗杰斯教授的《创新的扩散》,和基于此理论,专注于讨论技术公司营销的著作《跨越鸿沟》。阿勒斯瓦哈认为,无论技术多么先进,如果不能有效地转化为生产力、创造就业、贡献GDP、提升企业营收和效率,那么对于决策者而言,这项技术就是无关紧要的。
这就让我想起微软CEO萨提亚讲的,能将发达国家的GDP增长10%,才能算是AGI实现了。
他坦言,许多来自硅谷的初创公司,在早期或许能通过展示模型的技术参数和领先性来吸引眼球,甚至获得数百万美元的投资。但发展到现阶段,市场更关心的是这些技术能为实体经济带来什么实际价值。部长强调,在座的斯坦福学子,如果不能用简洁明了的语言,向决策者阐述其技术突破将如何具体地改善民生、驱动经济,那么他们的创新就很难获得真正的支持和大规模应用 。
斯坦福的主持人随后提出了一个非常实际的问题:GDP的规划周期往往长达数十年,而计算架构的迭代周期却可能短至18到24个月 。例如,英伟达的Blackwell芯片在短短24个月内就实现了对H100芯片2.5倍的性能提升 。那么,在建设一个可能需要18到36个月才能上线、并且预计使用6到8年的数据中心时,如何平衡这种短期技术迭代与长期基础设施规划之间的矛盾,避免建成即落后的风险?
他给出的答案是,在每一个技术浪潮中,都有市场塑造者和市场响应者 。在当前快速变化的时代,必须保持敏捷,两者兼顾。不能简单地认为“我建好了,超级巨头(hyperscalers)就会来,应用场景就会自然产生” 。沙特的策略是“两条腿走路”:一方面进行前瞻性的基础设施布局,另一方面则从实际应用场景出发,倒逼技术选型和基础设施建设 。这种“由外而内”和“由内而外”相结合的思路,确保了投资的精准性和有效性。
六、 沙特的AI实践:三大应用场景驱动国家级创新
为了更具体地阐释“应用驱动”的理念,阿勒斯瓦哈分享了沙特在生成式AI(Generative AI)、代理式AI(Agentic AI)和物理AI(Physical AI)三大领域的旗舰应用案例,这些案例甚至被世界经济论坛评为全球范围内最具代表性的AI真实用例之一 。
首先是生成式AI在医疗健康领域的突破。沙特一家名为Nano Palm的初创公司,致力于攻克镰状细胞病(Sickle Cell Disease) 。这种疾病会导致红细胞变成镰刀状,堵塞血管,在中东和非洲地区影响着约2000万人的生命健康,甚至导致截肢和死亡 。传统上,针对此类疾病的药物研发周期长达十年。Nano Palm利用生成式AI技术,分析药物分子的各种排列组合、特性和属性,结合CRISPR基因编辑技术,设计出能够精准剔除致病基因的纳米机器人 。通过这种方式,他们有望将药物研发时间从十年缩短到两至三年,为无数患者带来新生希望 。部长强调,尽管AI可以加速研发,但在医疗领域,治理(governance)至关重要,临床试验的各个阶段(毒性、副作用、有效性、全面批准)都不能省略,必须在基于风险的评估框架下进行,以平衡创新与安全 。
其次是代理式AI在能源行业的应用。沙特阿美(Aramco)作为全球能源巨头,与SambaNova等AI公司合作,利用智能AI技术管理石油管道的腐蚀问题、优化钻井作业,从而实现每年高达10亿美元的成本节约 。AI模型通过分析油井的孔隙度等数据,为工程师和管理层提供决策支持,显著提升了运营效率和经济效益 。
最后是物理AI在外科手术领域的革命性进展。沙特实现了全球首例全机器人辅助的心脏移植手术 。传统的心脏移植手术需要在胸部切开20到30厘米的创口,患者术后需要在ICU(重症监护室)或CCU(冠心病监护室)住院6到8周 。而借助AI驱动的机器人手术系统,仅需开一个2到3厘米的小切口,通过灵活的机械臂,在4小时内即可完成移植手术,患者在48小时内即可出院 。这一突破不仅大大减轻了患者的痛苦,缩短了恢复时间,更有望解决心脏外科医生短缺、偏远地区手术难等问题,让高质量医疗服务惠及更多人群 。
这些案例充分展示了沙特如何将AI技术与国家战略重点(如医疗健康、能源转型)相结合,以解决实际问题为导向,推动技术创新和产业升级。
七、 开放与务实:沙特的AI模型选择与生态构建之道
在谈及AI模型时,主持人提及了Mistral AI这家备受关注的法国开源AI公司,沙特王国也对其进行了投资。这自然引出了关于开源模型与闭源模型、以及沙特在模型选择上的立场等问题。
阿勒斯瓦哈再次强调了“历史是未来的最佳预测器”的观点 。他回顾道,在网络技术发展的早期,也曾存在多种竞争性的网络协议,但最终IP协议凭借其开放性和标准化(得益于美国NIST等机构的推动)脱颖而出,成为业界主流,尽管一些专有系统依然存在 。他认为,类似的趋势也将在AI模型领域上演:未来将会是闭源模型和开源模型并存的局面,并且在某个阶段,行业可能会走向某种形式的标准化 。
从终端用户的角度出发,沙特采取的是一种“模型无关论”(model agnostic)的务实态度。部长明确表示:“无论哪种模型能帮助我们拯救生命、提高效率、创造GDP和生产力,我们都会使用它。”他回忆起在思科工作时,“没有技术宗教”(no technology religion)的信条,并将其引申为当下应该奉行“没有模型宗教”(no model religion)。
他观察到,有些从业者过于执着于特定的模型,而实际上,各种模型之间可以相互借鉴、 brilliantly地学习。例如,DeepSeek就借鉴了Mistral的混合专家(Mixture of Experts, MoE)架构,并成功应用在自己的模型中 。
因此,阿勒斯瓦哈对在座的斯坦福精英们的建议是:不要过于固守某一种特定的技术路径或模型,因为市场变化极其迅速和敏捷。他感慨道,过去两年AI领域的变化,甚至超过了他过去二十年所见证的行业变革总和 。这个“万千模型竞逐、开源闭源共舞”的世界,需要的是开放的心态和灵活的应变能力。
八、 拓展AI边界:太空、NEOM新城与普惠算力的未来图景
在问答环节,阿勒斯瓦哈进一步拓展了AI应用的想象空间,并回应了关于沙特在太空探索、NEOM未来城市建设以及如何实现普惠算力等热点问题。
太空探索与AI的融合:部长表示,在生成式AI兴起之前,太空探索曾是他最为关注的领域。他认为,太空产业若想实现2万亿美元的产业规模目标,必须与AI技术深度融合。太空经济分为上游(太空探索、登月、火星任务等)和下游(商业应用,如太空通信、地球观测、导航等)。沙特目前正重点发展太空通信技术(涵盖低地球轨道LEO、中地球轨道MEO、地球静止轨道GEO卫星),并相信多种技术的交叉融合才能带来下一代通信的突破 。在地球观测方面,沙特利用AI分析地理空间数据,成功解决了随机耕作(random farming)导致的大面积荒漠化和水资源浪费问题,仅一年就将水资源浪费减少了66%。这充分展示了“AI+太空”在解决实际环境问题上的巨大潜力。
NEOM新城——未来生活的实验场:对于备受瞩目的NEOM项目,部长将其定位为一个“真正的北方”(true north)和“冉冉升起的新星”,旨在推动整个国家突破创新边界。
NEOM是一个全新的市场颠覆者,挑战现有城市模式。例如,在绿色氢能方面,NEOM正在建设一个4千兆瓦的绿氢工厂,利用红海的海水电解制氢,为沙特从传统热能向绿色光子、电子和氢能的完整能源循环转型提供助力 。这个绿氢工厂还将为DataVolt投资的一个1.5千兆瓦的数据中心外壳供能,使NEOM成为全球领先的AI训练和推理中心之一 。在城市设计方面,NEOM颠覆了以汽车为中心的设计理念,转而构建以人为本的城市,目标是让居民在5分钟步行范围内即可完成工作、生活、娱乐和学习 。这是一个自工业革命以来持续了近300年的城市发展模式的重大转变,其规划周期长达二三十年,充满了创新挑战与机遇 。
普惠算力与全球合作:针对如何让更多人获得AI算力的问题,部长介绍了沙特与Groq等公司合作,向全球提供最具成本效益的推理服务实例。通过Groq平台,用户可以访问Llama、DeepSeek乃至Mistral训练的阿拉伯语模型等多种领先模型。这一举措旨在降低AI应用的门槛,让那些因传统架构价格高昂而无法获得算力的国家和初创企业,能够利用沙特的能源优势、市场规模和资本,大规模部署和应用AI技术 。此外,部长还提到了“数字大使馆”(digital embassies)的概念,即允许其他国家在美国境内的沙特数据中心中运行其工作负载,并遵循其本国的数据主权和政策法规,这类似于物理世界中货物过境的“安全港”条款,为全球数据和算力资源的优化配置提供了新的思路 。
九、 下一代计算范式:内存计算、AI光子学与智能体AI的前沿探索
在讲座的尾声,阿勒斯瓦哈展望了更具颠覆性的下一代计算范式,并分享了他对代理式AI(Agentic AI)的看法。
内存计算(In-memory Computing):他个人对其专业领域内正在兴起的内存计算抱有浓厚兴趣 。内存计算旨在解决冯·诺依曼架构中计算与数据存储分离带来的能效瓶颈,将计算过程直接在内存中完成,从而大幅减少数据搬运,节省数十亿次的调用,显著提高效率。
据估计,相比于H100这类芯片数百瓦的功耗,采用内存计算技术,在完成相同数量级的浮点运算(T-flops)时,能耗至少可以降低50%。他认为,内存计算和近内存计算(Near-memory Computing)代表了计算架构的范式转移,有望打破自1945年冯·诺依曼架构诞生以来形成的传统格局 。
AI光子学与化合物半导体:部长再次强调了AI光子学和化合物半导体的重要性,认为这些领域正从实验室走向产业化,相关的学术论文、原型产品以及初创公司的融资消息都预示着该领域的蓬勃发展 。他期待斯坦福的顶尖人才能够抓住这些新兴机遇,创造出下一个伟大的技术突破 。
代理式AI(Agentic AI):针对智能体基础上的AI,阿勒斯瓦哈透露沙特政府正在开展一个项目,旨在通过智能体基础上的AI提升公务员的生产力,并预计能因此创造数十亿美元的价值。
他观察到,市场上有两类玩家:
一类是AI原生(AI native)公司,另一类是AI增强(AI enhanced)公司 。后者通常是传统的B2B SaaS(软件即服务)企业,在特定垂直领域(如医疗、人力资源、金融)拥有深厚的行业知识和客户基础,他们试图将现有数据和业务流程与AI模型结合,以实现智能化升级 。这类公司在任务级别的自动化方面取得了一些成功,但在更复杂的工作流层面和多智能体协同方面,成果尚不显著 。
相比之下,AI原生公司则采取了截然不同的路径。他们深刻理解到,AI的挑战不仅在于模型本身,更在于数据和商业模式 。这些公司在数据创建和数据清洗方面拥有核心优势。部长对AI原生玩家在解决“人在其中作用”(human in the loop)问题和数据层挑战方面的探索表示非常兴奋,并认为他们更有可能在智能体基础上的AI领域取得实质性突破。
如果大家已经看到了这里,应该已经同意了我在开篇所说的:这是一个100%的硬核讲座。在讲座的油管原视频下有一条留言这样写道:真是一位令人印象深刻的技术官僚啊。