深度长文|别再被AI的“Vibe Revenue”骗了!红杉教你一招看穿虚假繁荣

深度长文|别再被AI的“Vibe Revenue”骗了!红杉教你一招看穿虚假繁荣

原创 chouti 涌现聚点 2025年05月23日 09:28 浙江

AI 的浪潮汹涌而至,裹挟着前所未有的热度、海量的资本和无数充满想象力的概念。仿佛一夜之间,人人都在谈论 AI,追逐 AI,生怕错过这场“泼天的富贵”。估值火箭般蹿升,新公司如雨季的竹笋,媒体头条被“AI 颠覆一切”的论调占据。然而,在这片由算法和算力构建的“繁荣景象”之下,一个冷静而尖锐的问题正浮现出来:有多少是真正的价值创造,又有多少是昙花一现的“虚假繁荣”?

在这个关键时刻,全球最顶尖的风险投资机构之一——红杉资本(Sequoia Capital)[1],在其 AI Ascent 2025 大会[2]上,为我们带来了一场意义非凡的“硬核”课程。他们以历经多个技术周期的深刻洞察,剖析了在当前 AI 狂热中,究竟该如何辨别“真金白银”,以及构建真正能穿越周期、创造长期价值的 AI 公司需要具备哪些“硬核”指标。这场课,或许能为正身处迷局中的创业者、投资人和科技爱好者提供一张清醒的地图。

红杉合伙人 Packer Radio 在大会开场演讲[3]中直言不讳,在 AI 时代构建一家成功的公司,“95% 依然是老生常谈——解决重要问题、吸引优秀人才、打造卓越产品”,但正如他随后强调的那样[4],剩下的 “5% 具有 AI 特异性”,却是决定成败的关键分野。这 5% 不是技术有多酷炫,而是它如何在商业和价值创造层面体现与众不同。这堂“硬核课”,聚焦的正是这至关重要的 5%。

第一讲:不只看收入,更看“有效使用”:如何识别 AI 的“Vibe Revenue”陷阱

在 AI 领域,有一种收入被 Sequoia 称为 “Vibe Revenue”(情绪收入)。Packer Radio 描述这种初期收入“感觉很好[5]”,因为它来得快,让早期公司的数据看起来异常亮眼,仿佛一夜之间就实现了用户增长或商业化突破。

然而,这是一种危险的“虚假繁荣”。想象一下,一个 AI 应用凭借某个新奇功能或搭上最新的模型热度,迅速在社交媒体上传播,用户出于好奇下载试用,短时间内带来了大量新增和看似不错的收入数据。比如某个一键生成搞怪视频的 AI 小工具,或者一个能生成各种风格头像的 AI 绘画 App。它们在初期用户激增,数据曲线呈指数级上涨,让创业者心潮澎湃,投资者争相追捧。但这繁荣往往是脆弱的,一旦新奇感消退,用户发现它并不能真正解决日常问题,或者有新的、更酷的应用出现,留存率便会断崖式下跌。

LinkedIn 上一项对 2024 年失败 AI 初创公司的分析[6]证实了这种现象。许多公司在快速增长后遭遇了参与度困境,因为用户尝试产品是出于好奇而非解决实际问题的需求。报告显示,即使是科技巨头推出的产品,也可能面临这一挑战。例如,微软 Copilot 拥有 4.4 亿的潜在用户基础,但采用了某些版本后,采用率仅为 0.1%[7],这表明巨大的用户基数和资源并不能保证 AI 产品能够自然转化为用户的持续、深度使用。再如,曾获得大量投资的旅行规划公司 Utrip[8],尽管技术不错,最终却因用户不愿为 AI 生成的旅行计划付费而失败,这生动地展示了技术酷炫与市场真实需求脱节的危险。

真正有价值的收入,必须反映用户对产品的“持久行为改变[9]”(Durable Behavior Change)。 这意味着用户不是一时兴起,而是真正将你的产品融入了他们的工作流或日常生活,他们愿意持续地使用、依赖它,甚至付费。

Sequoia 强调,衡量“有效使用”的硬指标不是总用户数,而是 采用率(Adoption)、参与度(Engagement)和留存率(Retention)。Packer Radio 指出这些指标能够反映产品的真实粘性[10]。

数据能更直观地揭示这一差距。对于移动应用,DAU/MAU(日活/月活)比率是衡量粘性的重要指标:大于 20% 被视为良好,超过 50% 则是卓越表现[11]。社交媒体应用通常具有很高的 DAU/MAU 比率,因为它们深度融入了用户的日常交流习惯。而在 AI 原生应用领域,Sequoia 在 Keynote[12] 中提到 Chat GPT 的 DAU/MAU 比率正在爬升,逐渐接近 Reddit 等社交媒体的粘性水平[13],这有力地证明了它正在从一个尝鲜工具变成用户高频使用的应用,为持续价值创造奠定基础。相比之下,一项研究显示,53% 的用户在下载应用后 30 天内卸载,近 40% 的用户仅打开一次就消失[14],这些冰冷的数据是“Vibe Revenue”脆弱性的最好证明。许多初创公司常常过度关注绝对用户数量,而忽视 DAU/MAU 等关键粘性指标的警示作用[15],陷入自我欺骗。

作为创业者或投资人,必须穿透表面的数字,追问用户究竟在使用你的 AI 产品做什么? 他们是在核心工作流中解决了一个痛点,还是仅仅出于好奇进行了一次短暂的尝试?正如 Sequoia Capital 的判断[16]:“别自欺欺人地认为你有真正的收入,当那只是情绪收入时,它会反咬你一口。”

  • 思考: 你自己在工作中或生活中,有哪些 AI 应用是你真正离不开的?它们具备哪些特征?欢迎在评论区分享你的“高粘性 AI”名单。

第二讲:毛利不是结局,而是过程:如何看清 AI 公司的“价值链攀升”潜力图

在传统软件或互联网行业,毛利率通常是衡量商业模式健康度的重要指标。但在 AI 领域,早期或特定阶段的毛利率可能并不出色,甚至可能因为高昂的计算成本而显得“不好看”。但这并不意味着这家公司没有价值。Sequoia 提出,关键在于要看这家公司是否具备清晰的“价值链攀升”路径,能否从简单的“卖工具”走向“卖结果”,甚至最终实现“卖工作”。

为什么毛利不是唯一的判断标准?一方面,AI 模型的推理和计算成本正以惊人的速度下降。Sequoia Keynote[17] 中引用的数据显示,“过去 12 到 18 个月,每 token 的成本下降了 99%[18]”。这意味着即使早期成本较高,随着技术进步,成本端存在巨大的优化空间。

另一方面,真正的价值捕获体现在你能在多大程度上解决用户的核心问题,并因此获取溢价。Sequoia 认为,AI 公司可以沿着一条价值链向上移动:

  • 卖工具 (Selling a tool): 这是最基础的层面,你的产品是一个赋能工具,被整合进用户的软件预算中。

  • 卖结果 (Selling an outcome): 在这个阶段,你的 AI 不仅提供功能,更能帮助用户达成某个具体的结果。

  • 卖工作 (Selling work): 这是最高阶的价值捕获。你的 AI 能够替代一部分人工劳动,直接进入用户的“劳动预算”。

这个过程可以用简单的图例表示:

Sequoia 认为,价值正沿着这条链向上移动[19]。越靠近用户的核心痛点、解决越复杂的端到端问题、提供的价值越直接体现在业务结果或替代人工劳动上,其潜在价值和定价权越高。

成功的垂直市场 AI 公司能够收取溢价,正是因为它们实现了这种价值链的攀升。 它们不只是提供通用的 AI 能力,而是深入特定行业,理解其复杂的业务流程、非结构化数据和严格的合规要求(正如一篇关于垂直 AI 的分析所指出的[20],其核心在于深厚的领域专业知识)。

例如,Sequoia Keynote[21] 中提到 Harvey[22] 在法律领域和 Open Evidence[23] 在医疗领域,它们并非只是简单的文档分析或信息检索工具,而是通过深度整合行业知识、理解专业语言,提供能够辅助甚至部分替代律师或医生工作的复杂解决方案。大会上提到,Harvey 会派遣律师与律师事务所沟通[24],这正是深入行业、赢得信任的体现。通过解决这些行业的具体痛点,它们能够从提供“AI 助手”转变为解决“法律/医疗工作”的有效方案,从而捕获更高的价值。

补充信息[25]提供了更多垂直行业的案例,印证了这一趋势:

  • 在金融服务业,Salient 将 AI 深度融入贷款流程,整合多渠道沟通,使处理时间减少 60%[26] 并处理了数亿美元的交易量,这已是从沟通工具到流程自动化成果的转变。而 Feedzai 则从简单的反欺诈工具,扩展为覆盖开户、欺诈预防、反洗钱的全方位金融犯罪防御平台[27],保护数十亿消费者和万亿美元交易,其价值远超单个工具。

  • 在软件开发领域,GitHub Copilot 已发展出数亿美元的收入规模,企业采用率过半[28],这表明开发者已将其视为核心开发伙伴。类似 Codeium[29] 和 Cursor[30] 等工具也在快速增长。

这些案例表明,垂直 AI 公司之所以能收取溢价,是因为它们能够证明投资回报(ROI)——通过提高效率、降低成本、增强合规性或创造新收入流。它们具备行业专业知识、能处理复杂非结构化数据、确保合规、自动化完整工作流程,并能与现有系统无缝集成(正如另一篇关于垂直 AI 的文章所言[31],垂直 AI 能够处理传统软件无法有效管理的非结构化数据)。一些公司甚至开始尝试结果关联定价,例如根据 AI 解决的客户工单数量收费[32],或根据 AI 驱动的销售增长提成,这直接将自身价值与客户的业务成果挂钩。

因此,评估一家 AI 公司的商业模式,不能只盯着眼前的毛利数字,更要看它在多大程度上深入特定行业,解决了多大粒度、多大复杂度的“真问题”,以及它具备多少从“卖工具”向“卖结果”甚至“卖工作”攀升的潜力。这考验的不是技术本身的酷炫,而是技术与行业需求的深度耦合能力。

  • 思考: 在你所在的行业,你认为哪些具体的业务流程最有可能被 AI 深度自动化,实现从“工具”到“工作”的转变?欢迎在评论区留下你的看法。

第三讲:真假“数据飞轮”:你的数据能“转动”哪个业务指标?

“数据飞轮”(Data Flywheel)是 AI 时代构建竞争优势(moat)的高频词汇。其核心逻辑是:用户使用产品 -> 产生数据 -> 这些数据用于优化 AI 模型或产品功能 -> 更好的产品/模型吸引更多用户 -> 产生更多数据 -> ...形成一个自我强化的良性循环(正如 英伟达对数据飞轮的定义[33])。

这个概念听起来很美妙,几乎所有 AI 公司都会声称自己有数据飞轮。然而,Sequoia 对数据飞轮提出一个灵魂拷问:“那个数据飞轮转动了哪个业务指标[34](What business metric does that data flywheel move?)?” 如果答不上来,或者数据无法显著影响核心业务指标,那么 Sequoia 的判断是:“它就无关紧要[35]”(it just doesn't matter)。

换句话说,不是收集了数据就叫数据飞轮,更不是收集的数据越多越好。一个“有效”的数据飞轮必须能够驱动业务的内生增长或效率提升,并在数据上形成真正的竞争优势。

数据飞轮的简化模型如下:

只有当这个循环能够有效传导,并在用户行为和业务成果上体现出来,数据飞轮才算真正运转起来。

如何构建并验证一个“有效飞轮”?

  1. 关注数据质量和相关性: 收集的数据必须是高质量的、结构化的,并与产品的核心价值创造紧密相关。正如一项分析所强调的[36],低质量数据输入导致低质量结果。

  2. 打通“数据-改进”闭环: 确保收集到的用户数据(如交互行为、编辑修改、采纳率、失败反馈等)能够及时、有效地被用于优化模型、迭代产品功能或改进用户体验。

  3. 量化业务影响: 这是关键中的关键。必须能够清晰地衡量数据飞轮运转后,对核心业务指标产生的正面影响。这些指标可能是:用户留存率(Retention Rate)提升、单用户平均收入(ARPU)增长、特定任务完成率提高、客户支持工单减少、内容生成采纳率提升、人工审核成本降低等。

补充信息[37]提供了一些成功的案例,展示了企业如何利用用户交互数据并量化其影响:

例如,一家名为 Incident.io 的公司[38]开发了一个 AI 事件摘要功能,并在用户界面设计了明确的“接受/编辑/拒绝”按钮来收集用户反馈。通过分析这些数据,他们发现 63% 的 AI 摘要被用户完全接受[39]。这一量化结果不仅证明了 AI 摘要的准确性,更重要是指导了产品决策:基于用户的反馈,他们决定维持人工确认流程,避免因不够准确而导致用户对 AI 功能的全面排斥,从而维护了用户信任和采纳率。

再比如 Atom Bank[40],他们将客户投诉与具体用户行为相关联,深入分析后发现客户旅程中的痛点,并基于这些发现改进服务流程,结果使支持电话减少了 69%[41]。这直接将用户反馈转化为运营效率的巨大提升,这是数据飞轮驱动业务指标的有力证明。

这些案例的共同点是:它们不仅收集数据,更能从数据中提取可操作的洞察,并将其有效地转化为产品改进,最重要的是,这些改进能够带来可衡量的业务指标变化

然而,很多公司的数据飞轮是无效的。原因多种多样,正如一项分析所指出的陷阱[42]:组织割裂导致团队孤岛,数据工程师、分析师和业务方可能在不同的飞轮上工作,无法完成任何一个[43];缺乏清晰的商业目标,导致技术团队开发出在技术上很酷,但在商业上无关紧要的功能;反馈机制不畅,可观察性缺失,没有中央化系统很难跟踪和分析系统性能[44]。

真正的挑战不在于收集数据,而在于如何将原始数据转化为可执行的智能,并将这些智能有效地注入到产品或运营流程中,最终带来可衡量的业务价值。数据飞轮越转动,它积累的动力越大,但没有控制和明确方向的动力是危险的(没有控制的力量是有风险的[45])。

  • 思考: 你所在的团队或公司,是否真的有在用用户数据“转动”某个具体的业务指标?这个指标是什么?如果没有,是卡在了哪个环节?

特别加一课:比产品更重要——AI 时代的“信任资产”

在技术飞速发展、功能不断涌现的 AI 时代,Sequoia 在 Keynote[46] 中提出了一个至关重要的观点:“在周期的当前阶段,信任比你的产品本身更重要[47](Trust is more important than your product at this point in time...)”。他们认为,“产品会变得更好。如果客户信任你会把它做得更好,你就处于有利地位[48]。”

为什么信任在 AI 时代如此突出?

AI 并非完美无瑕,它会犯错,会产生“幻觉”(虚构不存在的信息),可能带有偏见,其决策过程往往是个“黑箱”。用户将数据、任务,甚至部分决策权交给 AI,需要极高的信任度。尤其是当 AI 开始深入医疗、金融、法律等敏感领域,或处理大量个人隐私数据时,信任更是生命线。

这些惨痛的案例告诉我们,AI 的失误有多容易侵蚀信任:

  • 麦当劳的 AI 点餐系统曾出现故障,无限量增加顾客的麦乐鸡订单[49],最终导致项目终止,成为 AI“不靠谱”的笑柄。

  • 加拿大航空的聊天机器人提供错误的丧亲机票折扣信息,导致公司面临诉讼并被迫赔款[50]。

  • 纽约市政府的 AI 聊天机器人甚至向企业主提供非法经营建议[51],直接打击了公众对政府官方 AI 工具的信任。

  • 科技巨头也不例外,Google 的 Bard 曾在演示中给出错误信息导致市值大跌[52],Google Photos 的种族歧视标签[53]、Gemini 扭曲历史图像[54]都引发了广泛批评。微软的 Tay 聊天机器人因学习不良信息迅速“黑化”被紧急叫停[55]。

  • 在自动驾驶领域,特斯拉 Autopilot 导致的多起致命事故[56](据 NHTSA 数据,已造成至少 17 人死亡)严重动摇了公众对自动驾驶安全性的信任。

  • 商业应用中的隐私担忧,如 Target 通过购物数据预测顾客怀孕[57],则敲响了 AI 侵犯个人隐私的警钟。

这些案例表明,AI 的每一次失误,尤其是在公共领域或涉及人身安全、财产、隐私的场景,都会放大其不可靠的印象,加剧不信任感。

因此,对于 AI 公司而言,构建和维护信任资产至关重要。这需要系统性的努力,正如负责任的 AI 数据隐私指南[58]和AI 透明度指南[59]等强调的最佳实践:

  • 透明度:从设计之初就融入透明原则[60],公开告知用户数据如何被收集、使用和存储,模型的局限性。使用户了解 AI 系统的能力、局限性和风险[61]。

  • 负责任的数据处理:坚持数据最小化原则[62],只收集必要数据;建立健全的数据治理机制,对敏感数据进行分类和保护[63];定义明确的数据保留政策,并在必要时安全删除数据。尽可能避免在不必要时使用个人数据,以规避数据保护法的约束(正如一项关于负责任 AI 的指南建议[64],如果避免使用个人数据,您的 AI 实践就不会受到数据保护法的影响)。

  • 安全功能与保障: 实施强大的安全协议保护数据,通过过滤机制和持续监控来防止 AI 输出有害内容。分享系统中嵌入的保障措施,如过滤机制、监控工具和使用指南(明确的保障措施是关键一步[65])。

  • 清晰的沟通与教育: 用通俗易懂的语言解释 AI 的工作原理、风险和能力。提供可理解的隐私政策[66]。

  • 伦理与合规:定期评估识别并消除 AI 软件中的偏见[67]。明确内部问责制。人类监督在 AI 流程中不可或缺,它是确保 AI 合规和负责任的关键保障[68]。

构建信任是一项长期投资。正如 Integral Ad Science (IAS) 在数字广告中设立负责任 AI 标准[69]的案例所示,优先考虑透明度,可以显著增强利益相关者中的信任。在当今高度竞争的 AI 市场中,透明度、安全性和负责任的数据处理不仅是合规性问题,更是关键的竞争优势。

  • 思考: 你认为哪些 AI 领域的“最佳实践”或“最差实践”给你留下了深刻印象,影响了你对 AI 的信任?

结语:AI 马拉松:跑得快更要跑得“硬核”

AI 浪潮的列车已经启动,并且以远超过去任何技术周期的速度狂飙。Sequoia 形容这种速度是“物理定律变了”[70],分发和采纳速度极快,“自然界厌恶真空[71]”(Nature hates a vacuum),如果你不快速行动,别人就会填补空白。因此,他们给创业者的建议是:“现在是全力以赴、最大速度前进[72]的时候了。”(run like heck, maximum velocity)。

速度固然重要,但 Sequoia 这堂“硬核课”的核心并非只有“快”,而是要在“快”的同时,扎扎实实地构建能够经得起时间考验的真实价值。无数高开低走的 AI 公司已经证明,仅仅依靠概念、短期流量或“Vibe Revenue”是无法在激烈的市场竞争中长久立足的。一份分析显示,AI 初创公司的失败速度是普通科技公司的两倍[73]。

这场 AI 马拉松的赢家,不会是那些泡沫最大、估值最高的公司,而是那些真正做到:

  1. 提供能带来“持久行为改变”的“有效使用”,而非短暂的“情绪体验”。

  2. 具备从“卖工具”向“卖结果/工作”攀升的“价值链潜力”,能在解决用户核心痛点中捕获不断增长的价值。

  3. 构建能够切实“转动核心业务指标”的“有效数据飞轮”,让数据成为驱动自身成长的核心动力。

  4. 将“信任”作为最宝贵的资产,通过透明、安全、负责任的实践赢得用户的长期信赖。

理解并践行这些“硬核”标准,是穿越当前 AI 狂热、辨别“真金白银”的关键。这需要清醒的头脑、务实的态度和长期的毅力。无论你是身处其中的创业者、寻求机会的投资人,还是关注科技未来的普通人,用 Sequoia 的尺子衡量这个行业,都能让你看得更远、更清晰。正如 高盛和红杉资本等主要投资机构[74]也开始质疑 AI 技术能否产生足够的利润来证明其高昂投入的合理性一样,市场正从盲目热情转向务实。

AI 确实有改变一切的巨大潜力,但这种潜力能否转化为可持续的商业成功和社会进步,取决于我们能否穿透表面的“虚假繁荣”,聚焦那些真正“硬核”的价值基石。

这场“硬核课”听完了,你的思考是什么?你认为还有哪些指标是衡量 AI 公司价值不可或缺的?欢迎在评论区分享你的见解,一起保持清醒,跑赢这场 AI 马拉松。

参考资料

[1] 

红杉资本(Sequoia Capital): https://www.sequoiacap.com/

[2] 

AI Ascent 2025 大会: https://www.youtube.com/watch?v=v9JBMnxuPX8

[3] 

大会开场演讲: https://www.youtube.com/watch?v=v9JBMnxuPX8

[4] 

他随后强调的那样: https://www.youtube.com/watch?v=v9JBMnxuPX8

[5] 

感觉很好: https://www.youtube.com/watch?v=v9JBMnxuPX8

[6] 

LinkedIn 上一项对 2024 年失败 AI 初创公司的分析: https://www.linkedin.com/pulse/i-analyzed-100-ai-startups-failed-2024-heres-what-one-williams-50g0e

[7] 

微软 Copilot 拥有 4.4 亿的潜在用户基础,但采用了某些版本后,采用率仅为 0.1%: https://www.linkedin.com/pulse/i-analyzed-100-ai-startups-failed-2024-heres-what-one-williams-50g0e

[8] 

曾获得大量投资的旅行规划公司 Utrip: https://www.linkedin.com/pulse/i-analyzed-100-ai-startups-failed-2024-heres-what-one-williams-50g0e

[9] 

持久行为改变: https://www.youtube.com/watch?v=v9JBMnxuPX8

[10] 

这些指标能够反映产品的真实粘性: https://www.youtube.com/watch?v=v9JBMnxuPX8

[11] 

DAU/MAU(日活/月活)比率是衡量粘性的重要指标:大于 20% 被视为良好,超过 50% 则是卓越表现: https://www.velaris.io/articles/dau-mau-ratio-understanding-metric

[12] 

Sequoia 在 Keynote: https://www.youtube.com/watch?v=v9JBMnxuPX8

[13] 

Chat GPT 的 DAU/MAU 比率正在爬升,逐渐接近 Reddit 等社交媒体的粘性水平: https://www.youtube.com/watch?v=v9JBMnxuPX8

[14] 

一项研究显示,53% 的用户在下载应用后 30 天内卸载,近 40% 的用户仅打开一次就消失: https://www.linkedin.com/pulse/silent-killers-startups-why-your-app-retention-andrew-mikhatskiy-bxb1e

[15] 

常常过度关注绝对用户数量,而忽视 DAU/MAU 等关键粘性指标的警示作用: https://pilot.com/blog/ai-metrics-fundraising-startups

[16] 

Sequoia Capital 的判断: https://www.youtube.com/watch?v=v9JBMnxuPX8

[17] 

Sequoia Keynote: https://www.youtube.com/watch?v=v9JBMnxuPX8

[18] 

过去 12 到 18 个月,每 token 的成本下降了 99%: https://www.youtube.com/watch?v=v9JBMnxuPX8

[19] 

价值正沿着这条链向上移动: https://www.youtube.com/watch?v=v9JBMnxuPX8

[20] 

一篇关于垂直 AI 的分析所指出的: https://www.multimodal.dev/post/meet-vertical-ai

[21] 

Sequoia Keynote: https://www.youtube.com/watch?v=v9JBMnxuPX8

[22] 

Harvey: https://www.harvey.ai/

[23] 

Open Evidence: https://openevidence.com/

[24] 

Harvey 会派遣律师与律师事务所沟通: https://www.youtube.com/watch?v=v9JBMnxuPX8

[25] 

补充信息: https://www.turing.com/resources/vertical-ai-agents

[26] 

Salient 将 AI 深度融入贷款流程,整合多渠道沟通,使处理时间减少 60%: https://www.turing.com/resources/vertical-ai-agents

[27] 

Feedzai 则从简单的反欺诈工具,扩展为覆盖开户、欺诈预防、反洗钱的全方位金融犯罪防御平台: https://www.turing.com/resources/vertical-ai-agents

[28] 

GitHub Copilot 已发展出数亿美元的收入规模,企业采用率过半: https://menlovc.com/2024-the-state-of-generative-ai-in-the-enterprise/

[29] 

Codeium: https://codeium.com/

[30] 

Cursor: https://cursor.com/

[31] 

另一篇关于垂直 AI 的文章所言: https://www.multimodal.dev/post/meet-vertical-ai

[32] 

结果关联定价,例如根据 AI 解决的客户工单数量收费: https://www.lek.com/sites/default/files/insights/pdf-attachments/future-role-ai-pricing.pdf

[33] 

英伟达对数据飞轮的定义: https://www.nvidia.com/en-us/glossary/data-flywheel/

[34] 

那个数据飞轮转动了哪个业务指标: https://www.youtube.com/watch?v=v9JBMnxuPX8

[35] 

它就无关紧要: https://www.youtube.com/watch?v=v9JBMnxuPX8

[36] 

一项分析所强调的: https://www.linkedin.com/pulse/why-ai-projects-fail-lessons-from-new-product-dr-robert-g-cooper-yrfoe

[37] 

补充信息: https://incident.io/blog/lessons-learned-from-building-our-first-ai-product

[38] 

Incident.io 的公司: https://incident.io/

[39] 

63% 的 AI 摘要被用户完全接受: https://incident.io/blog/lessons-learned-from-building-our-first-ai-product

[40] 

Atom Bank: https://www.atombank.co.uk/

[41] 

结果使支持电话减少了 69%: https://blog.buildbetter.ai/use-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值