自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

强化学习曾小健

强化学习、大模型、AIGC、AGI

  • 博客(331)
  • 资源 (1)
  • 收藏
  • 关注

原创 斯坦福AI年度报告:中美差距缩至0.3%,美国AI投资还是中国12倍

2022年,在大规模多任务语言理解(MMLU)基准测试中,得分超过60%的最小模型是PaLM,参数量为5400亿。在解决编码问题上,AI的能力从2021年的4.4%跃升至2024年的71.1%。这一进步速度令人惊叹,相当于在不到一年的时间里,中国AI模型的性能提高了近17个百分点。美国拥有更为成熟的AI产业链、更丰富的数据资源和更强大的计算能力,这些因素共同构成了美国AI持续创新的土壤。全球AI发展的两大引擎。2024年,美国机构开发了40个"值得关注的AI模型",而中国只有15个,欧洲仅3个。

2025-04-14 15:48:58 918

原创 93年博导教授!地大「最飒科研女神」实力出圈!,遥感大数据绘制着科技强国的未来图景

2022年,她主持的遥感智能分析项目斩获国家地理信息科技进步一等奖,这项被称作"地理信息界奥斯卡"的殊荣,常被业界视为院士候选人的"敲门砖"。当被问及未来规划时,这位年轻科学家望向墙上李德仁院士的题词"仰望星空,脚踏实地",给出了充满90后特质的回答:"希望能带学生造个AI卫星,让它学会用中国人的智慧解读地球故事。走进朱祺琪的实验室,墙上"让卫星会思考"的标语下,贴着张特殊的《师生公约》:"每周运动三次""23点后禁止工作群发言""每月必须读1本非专业书籍"。在同事眼中,朱祺琪是位"住在办公室的教授"。

2025-04-14 15:40:45 794

原创 【小白也能读懂】操作系统的发展历程

需要注意的是,虽然Linux能用于微机,但其设计初衷更偏向服务器应用,因此,在架构上比普通个人操作系统更为复杂。在没有计算机的时代,破译一份加密电报需要6-7周时间,而使用计算机后,通过穷举法,只需要6-8个小时就能完成破译。例如百度、阿里巴巴的服务器集群:当海量用户请求涌入时,中间节点会将请求分发给不同计算机(如第一台处理前100个请求,第二台处理101-200个请求),并动态调整各计算机的工作量以保证效率。我们总结一下,从无操作系统到批处理、分时系统、实时系统的发展历程,都是这些需求推动的结果。

2025-04-14 15:36:58 878

原创 [音乐生成]Analyzable Chain-of-Musical-Thought Prompting for High-Fidelity Music Generation

这篇论文介绍了一种名为MusiCoT的分析性音乐链式思维提示技术,旨在提高高保真音乐生成的效率和质量。

2025-04-14 15:27:38 996

原创 强化学习在LLM训练中的作用的思考

2025年04月13日 15:08贵州作者:纪牛牛@知乎在LLM火热之前,我一直从事强化学习相关的算法工作。最近几周一直在思考RL是如何在优化LLM中发挥做用的。从基于人类反馈的微调到确保在多样化场景中的稳定泛化,RL方法在现代AI中已经开辟了一个不可或缺的领域。在这篇文章中,我将讨论不同RL方法的差异,纯监督方法不足,为什么结合监督微调(SFT)和RL,比如DeepSeek-R1这样的训练方式下,会产生更好的结果,以及RL固有的探索如何增强泛化和处理分布外数据。

2025-04-14 14:40:41 708

原创 李泽湘弟子冲刺上市!刚刚官宣融资7亿,重押具身智能

李泽湘。

2025-04-14 14:36:02 415

原创 深度强化学习十大原则

并且都有足够好的理由!强化学习是一种难以置信的通用范式,原则上,一个鲁棒而高性能的强化学习系统可以处理任何任务,而且将这种范式和深度学习的经验学习能力相结合是很自然的。深度强化学习是最接近于通用人工智能(AGI)的范式之一。讲述积极结果的故事是很容易的,但实现起来很难的,所以需要某些思想或者原则进行指导,本文将列举。永远不要根据环境的「真实」状态来定义状态(智能体应该是一个部分可观察马尔可夫链模型)。从想象的经验中学习,使用我们应用于实际体验的相同RL算法。给定无限资源,一个好的算法(最终)是最优的。

2025-04-14 14:29:10 790

原创 上交大等提出MM-Eureka:R1-Zero的「Aha Moment」同样存在于多模态推理

在 instructmodel 上,我们几乎使用全部开源数据(50k),便在所有的多模态数学推理 benchmark' 上相比 instruct model 取得稳定提升,我们对比了使用 MPO,COT SFT 作为后训练的方法,我们发现简单的 rule-based RL 具备及其强大的数据高效性。这种方案虽然可以帮助 RL 进行稳定训练,但是其数据利用率降低了,所以我们希望在模型训练的过程中动态进行基于难度的数据筛选(类似 PRIME)。极简的 RL 设计足以获得很好的效果,如果是在。

2025-04-14 14:14:08 614

原创 3710亿数学Tokens!全球最大开源数学数据集MegaMath震撼发布,碾压DeepSeek-Math

当前常用的开源文本抽取工具对 HTML 中数学的元素并没有很好地处理,团队因此开发了一套 HTML 结构优化的脚本,在抽取前就提取和优化 LaTeX、KaTeX、mathml 等元素中的公式信息进行重构,以确保在抽取时充分保留文本中的数学符号、公式和定理。因此,这是一份宝贵的数据领域。作者希望,MegaMath 的发布,能在一定程度上推动开源数学预训练数据集在规模、质量与多样性上的进一步发展,也希望 MegaMath 能成为构建更强数学语言模型的一个坚实起点,激发更多来自学术界与工业界的合作与创新。

2025-04-14 14:06:30 458

原创 深入浅出解读“多巴胺(Dopamine)论文“、环境配置和实例分析

多巴胺支持两种运行方式:train和train_and_eval。前者仅测量训练期间的平均分数,而后者则与评估运行相交学习。

2025-04-14 10:23:36 1094

原创 在线和离线强化学习:它们是什么以及如何比较?

无论训练批次大小如何,在线强化学习 (RL) 的核心特征在于近乎实时地访问环境,这使得 RL 策略能够针对给定的观察结果,使用任何有效的动作来探索环境并分析其结果。因此,在无法获得精确的 RAN 模型或模型成本高昂的情况下,离线 RL 应运而生,成为一种有效的替代方案。相比之下,离线强化学习可以采用多模式数据收集,例如,从基线策略、先前策略部署,甚至人机交互中获取记录的数据。为了确保良好的性能,需要精心设计这些循环:例如,并行化以最大化数据吞吐量并避免训练瓶颈,维护数据来源,以及处理意外的在线事件。

2025-04-14 10:18:58 793

原创 【重磅】深度强化学习的加速方法周转时间(turnaround time)

我们引入了一个统一的框架来并行化深度RL,它使用硬件加速器来实现快速学习。该框架适用于一系列算法,包括策略梯度和Q值学习方法。我们的实验表明,几种领先的算法可以高度并行的方式学习各种Atari游戏,而不会损失样本复杂性和前所未有的挂钟时间。该结果表明了显着提高实验规模的有希望的方向。我们将发布代码库。我们注意到扩展该框架的几个方向。首先是将其应用于Atari以外的领域,尤其是涉及感知的领域。其次,由于GPU加速推理和训练,我们的框架很可能有利地扩展到更复杂的神经网络代理。

2025-04-14 10:10:15 1642

原创 IJCAI2024: 基于集成网络的离线到在线强化学习

然后在线阶段迁移离线阶段的策略网络和Q网络作为在线微调的起始状态,在确保稳定性的同时,仍然基于集成Q网络进行设计,通过使用新的目标Q值计算方法和基于不确定性的在线探索方法来提升在线微调阶段的学习效率。首先我们将CQL→SAC和CQL-N→SAC-N在在线微调阶段的Q值变化过程进行可视化,如图1(b)所示,CQL→SAC这样直接切换优化目标的方式确实会导致Q值的高估并且非常不稳定,而引入集成Q网络之后,由于SAC-N仍然具有保守低估Q值的能力,其相比于SAC算法的Q值也就会偏小并且保持相对稳定的变化。

2025-04-14 10:00:34 1240

原创 LLM Reasoning能力最近大跃进?不,都是「水分」!

在蒸馏模型(如DeepSeek-R1)上,RL训练几乎无提升,甚至可能过拟合小数据集(如AIME’24)。此外,作者开源了所有代码、提示词和模型输出,号召「阳光评测,拒绝黑箱」。最讽刺的是,某些论文宣称的「RL方法提升10%」,在统一评测标准后,:模型宣传的「推理能力提升」,可能只是评测游戏的胜利,而非真实进步。换到新数据集(如AIME’25),RL模型的性能直接「跳水」。:小数据集至少跑10次取平均,避免「运气好」导致的虚高结果。:温度调高(模型更「放飞」),正确率可能提升,但波动也更大。

2025-04-13 01:17:45 565

原创 RPC为什么比HTTP协议要好?

二进制(Protobuf、Thrift)文本(JSON、XML)

2025-04-13 01:14:00 375

原创 详解 MCP 传输机制

MCP 传输机制(Transport)是MCP 客户端与 MCP 服务器通信的一个桥梁,定义了客户端与服务器通信的细节,帮助客户端和服务器交换消息。MCP 协议使用JSON-RPC 来编码消息。JSON-RPC 消息必须使用 UTF-8 编码。MCP 协议目前定义了三种传输机制用于客户端-服务器通信:stdio:通过标准输入和标准输出进行通信SSE:通过 HTTP 进行通信,支持流式传输。(协议版本 2024-11-05 开始支持,即将废弃)

2025-04-13 01:12:13 941

原创 涨点起飞!2025创新方向:多模态 Embedding

任务提供了基础性框架。用户研究:通过用户研究验证了ConVis能够帮助用户理解CLIP对图像的语义理解,用户仅通过显著性图猜测图像描述的准确率达到了76.4%,显著高于随机猜测的25%。语义信息学习:通过t-SNE可视化,MANS方法训练的嵌入能够更清晰地区分结构嵌入和视觉嵌入,表明模型学习到了更丰富的语义信息。任务无关性:攻击是任务无关的,能够影响所有基于多模态嵌入的下游任务,即使这些任务在攻击时未知。进行负采样,实现了结构嵌入和视觉嵌入之间的对齐,这是多模态知识图谱嵌入中的一个重要创新。

2025-04-13 01:04:59 825

原创 Golang采集系统指标:CPU、内存、磁盘IO等等

在Linux中,可以通过读取/proc/stat文件,计算CPU时间的差异来得到使用率。在Linux中,可以读取/proc/diskstats文件,或者使用iostat命令,或者使用gopsutil的disk模块。以上方案提供了从基础指标到深度队列状态的完整采集实现,可根据实际业务需求进行裁剪和扩展。:同样,可以通过读取/proc/meminfo或者使用gopsutil库来获取内存信息,包括总内存、已用内存、空闲内存等。可以通过读取/proc/net/dev文件,或者使用gopsutil的net模块。

2025-04-13 01:00:54 302

原创 谢赛宁等新作上线,多模态理解生成大一统!思路竟与GPT-4o相似?

Xichen Pan是纽约大学库朗特学院计算机科学系的二年级博士生,由谢赛宁教授指导。曾在Meta GenAI Emu团队,微软亚洲研究院,阿里巴巴集团,以及地平线Horizon Robotics等实习。在上海交通大学获得了计算机科学学士学位,并获得了最佳论文奖。

2025-04-13 00:59:29 593

原创 首位 AI 科学家发论文进ICLR!最新 ScholarCopilot 智能学术写作助手!

方面(包括相关性、连贯性、学术严谨性、完整性和创新性),综合得分为 16.2(满分25),高于参数量更大的 Qwen-2.5-72B-Instruct 模型(15.8)和 Qwen-2.5-7B-Instruct模型(13.9)。如果大模型智能体具备了自动写 AI / 机器学习研究论文的能力,既可能加速机器学习领域的发展,同时也需要审慎评估以确保 AI 能力的安全发展。,平均获 6.25 的高分(6,7,6,6),在所有提交的论文中排名约 45%,远高于许多人类作者的论文。

2025-04-13 00:57:37 836

原创 APIGen-MT:高效生成多轮人机交互Agent数据的两阶段框架

此外,每轮对话的内容依赖于之前的函数调用及其输出,这使得保持一致性和正确性变得尤为困难。研究者使用APIGen-MT生成的数据训练了一系列不同架构和规模的模型(xLAM-2-fc-r系列),包括Llama 3.1/3.2和Qwen 2.5,参数规模从1B到70B不等。较小的模型如xLAM-2-32b-fc-r和xLAM-2-8b-fc-r也展现出令人印象深刻的性能,成功率分别为54.6%和46.7%结果显示,随着k的增加,APIGen-MT训练的模型的成功率下降幅度较小,表明其具有更高的可靠性和一致性。

2025-04-13 00:54:01 1023

原创 算法不重要,AI的下一个范式突破,「解锁」新数据源才是关键

这是一个荒谬的数据量,比整个互联网上可用的文本多得多。其实,这四件事(深度神经网络→Transformer 语言模型→RLHF→推理)就概括了 AI 领域发生的一切:我们有了深度神经网络(主要是图像识别系统),然后是文本分类器,然后是聊天机器人,现在我们有了推理模型(不管那是什么)。大多数人认为,这种持续的进步来自于学术界(主要是麻省理工学院、斯坦福大学、卡内基梅隆大学)和工业界(主要是 Meta、谷歌和少数中国实验室)研究界的稳定 idea 供给,同时还有很多在其他地方进行的研究是我们永远无法了解的。

2025-04-13 00:22:45 933

原创 体验智能体构建过程:从零开始构建Agent

感知环境、做出决策。

2025-04-13 00:19:28 641

原创 稻盛和夫:员工的意愿决定企业的命运

我们常常可以听到各种各样的经营理念,很多情况下,我们听到其他企业的经营理念后感叹道,“这个理念真不错啊”,于是也开始倡导“和为贵”之类的理念。我认为,与可用数字量化的资本实力、技术实力和人力资源等看得见的部分相比,看不见的部分对经营的影响要大得多。看得见的部分指的是资本金的数额、财务的稳健性、拥有多少包括不动产在内的抵押物,以及技术开发和人力资源等用数字可以量化的内容。在一无所有的情况下,企业获得了惊人的发展,这肯定是因为看不见的部分产生了巨大影响。的名言所总结的,“衡量一个人的成功标志,不是看他登到。

2025-04-13 00:06:07 1011

原创 零成本替代OpenAI Operator,智能纠错自动绕过验证码和页面变动

Nanobrowser作为一款基于多智能体协作的开源Chrome扩展工具,它不仅打破了技术垄断,更以免费、灵活和隐私优先的特性,成为AI自动化领域的新标杆。例如,当用户要求“筛选亚马逊上防水且续航超10小时的蓝牙音箱”时,Planner会生成操作路径,并动态调整以应对页面结构变化或验证码干扰。例如,在财经新闻摘要任务中,用户可追加“仅提取近三天信息”的指令。舆情监控:实时抓取社交媒体与新闻站点,生成品牌声誉日报,响应速度比人工快6倍。招聘初筛:解析数百份简历,自动匹配岗位要求,筛选准确率达85%。

2025-04-13 00:02:59 972

原创 学术汇报新宠!Albi Beamer 主题,打造高级感学术演讲,秒变学术圈“顶流”!

先在导言区设置好标题\title、副标题\subtitle(可选哦)、作者\author、机构\institute、日期\date,再用插入心仪的 logo,就能轻松打造专属标题页。插入标题页也超简单,或任选其一,简约大气的标题页瞬间生成。特殊页面定制:标题页、各部分页面、各节页面都能深度定制。标题页分为 logo 区、标题区、作者区和空白区,通过和调整颜色和字体,比如,让标题页更吸睛。部分页和节页也能根据需求,定制不同区域的颜色和字体,突出重点内容。框架标题、页眉和页脚设置。

2025-04-13 00:00:56 818

原创 Tensor-001 矩阵乘法分块乘法概述

以下文章来源于zartbot ,作者扎波特的橡皮擦新开一个专题来介绍一下矩阵计算相关的内容, 从最基本的算法,到Cutlass这些线性代数模版库, 特别是Layout代数相关的内容, 后面再逐渐细化到一些硬件实现访存优化和一些算子融合相关的话题, 准备工作闲暇时间有点空就补一点, 做个长期的专栏.对于一个矩阵乘法, 我们定义如下:如下图所示:因此我们可以构建一个最简单的算法这种乘法是也被称为矩阵乘法的内积形式我们可以注意整个过程中随着循环, B矩阵的乘法空间局部性很差,存在多次访问, 因此我们尽量需要

2025-04-12 23:59:48 546

原创 数学史上最具影响力的网红

在这位伟大哲学家的观点里,一颗豆子在前世可能是只蝎子,而这只蝎子又可能是他的大舅“埃德蒙”。事实上,毕达哥拉斯的影响力之大,以至于即使在2500多年后的今天,“毕达哥拉斯定理”仍然被教授于世界各地的几乎每一间教室里。,我已经几个月没运动了,而在这场看似无尽的禁闭生活中,我的生物钟早已忘记了昼夜的区别。历史证据表明,早在古巴比伦、印度,甚至是毕达哥拉斯学派内部的其他数学家中,就已出现过该定理的证明。但这不仅仅是为了打卡健身励志。关于毕达哥拉斯,有一个广为流传但争议颇多的“冷知识”,与他素食主义的一部分有关。

2025-04-12 23:55:12 926

原创 谈谈字节的Attention/Expert分离

而网络上,本质就是Mellanox(Nvidia)网卡的设计缺陷, 即便是开了AR还会有几个微秒延迟的上升, 主要是在接收端ReOrder的实现上, DDP的作业抄的不干净...我们在两年前设计eRDMA拥塞控制算法的时候就考虑过AE分离的问题, 因此对接收端的incast情况下的变异系数的考虑远高于带宽利用率, 当然最终的结果是带宽又能打满,变异系数又几乎为0,多路径打开和关闭延迟没区别,甚至开了由于单个QP可以在两个网口上传输延迟更低.最后扯个淡... 一个月前就预测过NV的股价会到70~80的区间。

2025-04-12 23:52:12 730

原创 人形机器人:丝杠的技术特点剖析

在人形机器人的腿部运动系统中,丝杠是实现腿部各种动作的动力之源。例如,在电子芯片的制造过程中,机器人手臂需要将微小的芯片准确地放置在电路板上,误差必须控制在极小的范围内,丝杠的高精度传动确保了这一任务的顺利完成,大大提高了生产效率和产品质量。想象一下,在未来的手术中,机器人助手能够通过高精度丝杠的精确控制,进行更加精准的手术操作,大大提高手术的成功率和患者的康复率。以机器人的手臂为例,想象一下,当机器人需要抓取一个物体时,它的手臂要进行复杂的伸展、弯曲和旋转动作,而这些动作的背后,离不开丝杠的精确传动。

2025-04-12 23:46:47 377

原创 零门槛、高性能!傅利叶发布首款开源人形机器人Fourier N1

让所有人以更低的门槛参与到人形机器人开发当中,通过开源打破传统机器人行业“闭门造车”的困境,正如傅利叶强调的一样,Fourier N1提供了类似乐高积木的模块化硬件架构,配合开源数据与算法,让开发者重新定义想象力边界。而N1作为一款面向机器人社区打造的零门槛、高性能的人形机器人,傅利叶希望通过开放技术,让更多的机器人爱好者能够参与其中,推动技术创新,形成更为强大的技术开源社区。后期,傅利叶计划逐步开放针对该平台的推理代码与训练框架,为全球开发者提供更加完善的验证与开发环境,从而加速机器人技术的创新和应用。

2025-04-12 23:39:53 508

原创 都全民AI时代了,还不了知道MCP?

MCP 通过统一协议规范(类似“AI界的USB-C”),让模型、工具和数据源遵循同一套通信标准,实现“一次开发,多模适配”。简单来说,MCP 是一种开放标准协议,旨在为大型语言模型(LLMs)与外部数据源、工具和系统提供标准化接口,解决 AI 应用中的数据孤岛问题,实现跨系统的无缝交互。:根据 LLMs 的决策,MCP Server 调用对应的外部工具或 API(如通过Shodan MCP Server 执行网络威胁扫描,或通过 Playwright MCP Server 控制浏览器自动化)。

2025-04-12 20:39:41 1046

原创 目前最强的2个代码生成 AI 模型 Gemini 2.5 pro

是Google推出的最新一代“思维型模型”。这款模型上线不到一周,便迅速登上了LMArena排行榜的第一名,表明其在编程、数学、科学推理等领域的强大能力。其最大的亮点之一是100 万 tokens 的上下文窗口,让其能够处理更长的文本,更加适合进行复杂的编程任务。• 支持100 万 tokens 的上下文窗口,能够处理大量文本;• 在编程、数学、推理等领域有着出色的表现;• 提供快速的基准测试成绩,能够在多个任务中取得较高准确率,63.8%。而之前的王者——,在同一测试中的准确率是。

2025-04-12 20:38:17 692

原创 手机实现GPT级智能,比MoE更极致的稀疏技术:省内存效果不减|对话面壁&清华肖朝军

CFM是一种原生稀疏技术,利用模型本来就有的稀疏激活性质,相比MoE可以极大提升模型参数效率。

2025-04-12 15:58:33 933

原创 深度|Sam Altman:知识储备的价值正在让位于模式识别与综合能力,当下人类的价值是“为他人创造价值“

我是一个技术乐观主义者,热爱科学,我认为这是我能想象的最酷的事情,也是我能想象的花费工作时间的最佳方式,能够成为我认为是我们这一代人最有趣、最酷、最重要的科学革命的一部分。若要说非私心的理由,我认为科学进步是社会发展的引擎。我特别好奇的是:在这个信息日益对立、事实愈发难以取信于人的时代——比如阴谋论信仰的数据就显示,人们之所以相信阴谋论,部分原因是这让他们感觉自己特殊、重要,掌握了他人不知道的"秘密"。你认为我们渴望的就是这种真实的、人类之间的连接,即使它是有缺陷和混乱的,当然,AI也会学会模拟这种连接。

2025-04-12 14:01:49 743

原创 魔改AlphaZero后,《我的世界》AI老玩家问世,干活不用下指令

两个 Agent 共享一个奖励函数,但关键是助手最初对这个奖励函数是不确定的,assistance games 消除了欺骗的动机,因为助手的表现取决于真实的潜在奖励函数,而不是人类的反馈。进一步使用 SFT 训练预训练模型,其中使用人类专家作为助手的数据,对预训练模型进行微调以模仿人类助手,类似于在 RLHF 的 SFT 阶段训练 LLM 模仿人类书写的助手回复的方式。MBAG 的挑战在于目标结构的分布非常复杂,可能的目标数量超过 10^400 个,远远超过以往研究中的数量,同时状态和动作空间也更大。

2025-04-12 14:00:03 683

原创 Cursor压力山大:VSCode 3月更新,原地化身免费AI代码编辑器

"的转变,也让开发者能够在任何环境下都能获得媲美Cursor、Windsurf等专业AI编辑器的体验。对于开发者而言,这不仅是工具升级,更是工作方式的变革。我们正见证从"人适应工具"到"工具理解人"的转变,而VSCode凭借这两项更新,已经走在了这一变革的前沿。: 接入成功后,你可以在VSCode中直接使用自然语言查询导航信息,例如: "查询从北京中关村图书大厦到玉渊潭公园的驾车路线"其中最重要的是工具(Tools),它能让VSCode获得各种专业能力,如地图导航、股票查询、天气预报等。

2025-04-11 09:52:20 669

原创 首个AI科学家发论文进ICLR!得分6/7/6,从选题到实验全程零人工,连GitHub代码库都是AI写的

论文中的提出了一种旨在增强神经网络组成泛化的组成正则化方法,进行了大量实验以评估其影响,并分析了算子复杂性对模型性能的影响,讨论了组成正则化没有产生预期效益的潜在原因。AI Scientist-v2提出了科学假设,提出了测试假设的实验,编写和完善了进行这些实验的代码,运行实验,分析数据,将数据可视化为图表,并写下整个科学手稿的每一个字,从标题到最终参考文献,包括放置图表和所有格式。值得一说的是,在拿下谷歌offer前,恰巧遇上2009年的经济危机,狮子哥找不到工作,好几个月都只能靠领取救济金勉强度日。

2025-04-11 03:44:18 927

原创 论文目录 | 国内游戏研究前沿

数字游戏是全球极具影响力的新兴媒介形态与文化传播渠道,也是中华优秀传统文化创造性转化与创新性发展的重要途径之一。基于对现状的充分调研,综合游戏内容分析方法,提炼出数字游戏传播中华优秀传统文化的“三重境界”(符号-知识-观念)与“三个维度”(人物-环境-行动)。“三境”反映了游戏传播文化由浅入深的层次,同时也可以衡量玩家在游戏中接触文化的效果:符号境是以融入传统文化元素与形式的视听符号与美学风格唤起玩家情感;知识境是传播传统文化知识和信息以提升玩家认知;

2025-04-11 03:43:32 657

原创 一文彻底搞懂谷歌的Agent2Agent(A2A)协议

Agent2Agent (A2A) 框架的核心在于其定义的一系列标准化技术组件,旨在确保异构AI智能体(Agent)之间能够进行有效、可靠且安全的互操作。

2025-04-11 03:41:47 928

搜索引擎概览 searchengine

搜索引擎概览 searchengine

2024-11-19

11个代码生成相关的论文,20241022更新版本-持续更新,包含代码搜索、代码搜索、代码模型survey、代码评论评估、代码评

find . -mindepth 2 -maxdepth 2 -type f -name "*.pdf" | awk -F/ '{print $(NF-1)}' | sort | uniq -c 2 代码或bug分类 1 代码搜索 1 代码生成 1 代码模型survey 1 代码评论评估 5 代码评估与提示

2024-10-22

10篇代码生成的论文,包括代码评估、代码搜索、代码生成、survey、代码或bug分类

题目 类型 分区 摘要 精读链接 Comparing large language models and humanprogrammers for generating programming code 代码评估 arxiv 评估七种LLMs在生成编程代码方面的性能,探讨不同提示策略对LLMs编码性能的影响,直接比较LLMs与人类程序员的编程能力,评估LLMs在不同编程语言之间生成和翻译代码的能力,以及考察LLMs的计算效率和从过去错误中学习的能力。 A Comparison of the Effectiveness of ChatGPT andCo-Pilot for Generating Quality Python Code 代码评估 会议 包括评估ChatGPT和Copilot在解决LeetCode编程问题上的有效性,探讨ChatGPT在接收到反馈后纠正代码的能力,以及其在提高代码质量和性能方面的潜力。 Program Code Generation with Generative AIs 代码评估 MDPI水刊-Algorithms非SCI 比较了人类生成的代码

2024-10-21

Multimodal Representation for Neural Code Search

—Semantic code search is about finding semantically relevant code snippets for a given natural language query. In the state-of-the-art approaches, the semantic similarity between code and query is quantified as the distance of their representation in the shared vector space. In this paper, to improve the vector space, we introduce tree-serialization methods on a simplified form of AST and build the multimodal representation for the code data. We conduct extensive experiments using a single corpu

2024-10-21

[MDPI水刊Algorithm非SCI]Program Code Generation with Generative AIs

[MDPI水刊-非SCI]Program Code Generation with Generative AIs

2024-10-21

Evolving code with a large language model

Evolving code with a large language model

2024-10-19

avx2_tensorflow-1.9.0-cp36-cp36m-win_amd64.zip

avx2_tensorflow1.9.0_win,avx2_tensorflow-1.9.0-cp36-cp36m-win_amd64.whl

2020-04-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除