RoboticsTechLab
一枚爱琢磨、愿意深耕的研发攻城狮,现从事于机器人、自动驾驶行业,不定期分享机器人、自动驾驶及工作经验相关内容,感谢关注!
展开
-
【局部规划模块图形学算法】计算机图形学计算的库介绍及调用
认知有限,望大家多多包涵,有什么问题也希望能够与大家多交流,共同成长!本文先对相关计算机图形学计算的库介绍做个简单的介绍,具体内容后续再更,其他模块可以参考去我其他文章提示:以下是本篇文章正文内容Polyscope被设计为一个轻量级的通用三维可视化库,不开源。主要用户界面显示、用于可视化界面,使用这个库成为项目的一部分,即可以实现rviz的可视化效果(类似于嵌套在项目中的代码实现rviz)原创 2023-07-06 17:05:56 · 486 阅读 · 0 评论 -
【多项式求解相关】
三次、五次多项式插值在工程实践中很常见。求解多项式的系数最直接的方法是根据端点处的约束条件,列出线性方程组,再写成矩阵方程AX=B,然后用通用的方法(如高斯消元法、LU分解等)解矩阵方程。 本博文利用matlab符号计算的功能,给出三次、五次多项式插值的系数解析解(不需要解矩阵方程),并尽可能减少运算量。代码运行效果展示我们定义了QuinticPolynomial , 它实现了5次多项式的参数方程的参数求解.我们需要给出多项式在起点和终点的状态约束求解之后, QuinticPolynomi原创 2025-04-03 14:09:16 · 66 阅读 · 0 评论 -
【路径平滑--线性回归优化】Savitzky-Golay数字滤波器
最小二乘估计具有良好的统计性质,如在一定条件下,它是无偏的、一致的,并且在所有线性无偏估计中具有最小方差(即它是BLUE,Best Linear Unbiased Estimator)。最小二乘法的数学意义在于它提供了一种系统的方法来最小化观测值与模型预测值之间的误差,从而得到模型参数的最优估计。在统计学和机器学习中,通过最小化残差平方和,可以找到最佳的模型参数,使得模型对数据的拟合最优。使用最小二乘的思想,为了使拟合效果最好,需要使残差的平方和最小,则需要使得所有拟合系数的一阶偏导为零。原创 2025-04-03 12:44:59 · 532 阅读 · 0 评论 -
(6)【生成图形相关运算】代码解析下
我们先考虑圆心在原点的圆的生成,对于中心不是原点的圆,可以通过坐标的平移变换获得相应位置的圆。// ROS的右手坐标系。原创 2025-04-03 12:23:14 · 54 阅读 · 0 评论 -
(3)【直线的相关运算】
判断点是否在线段上,就只需要,多判断一个点积(a · b = |a| |b| cosθ),如果PA和PB的夹角为180,则计算结果<0(因为cos π = -1);当t = 0时,P等于A;在计算上,满足叉积=0,则在直线上,再加上计算点积是否<0, 则可以判断是否在AB之间。u_last_to_pos到向量u_last_to_next上的投影长度L=两向量的数量积/u_last_to_next的模长。计算向量u_last_to_next和向量u_last_to_pos,在计算两向量的数量积(点乘),原创 2025-04-03 12:05:08 · 61 阅读 · 0 评论 -
(2)【相关向量运算】
点乘的结果表示向量A在向量B方向上的投影与向量B模的的乘积,可表示两个向量的夹角大小程度,向量叉乘是这这两个向量平面上,垂直生成新的向量,大小是两个向量构成四边形的面积,改变向量模大小,不代编向量方向,可以用于线段的延长或缩短。本质上就是两点距离公式。原创 2025-04-03 12:01:09 · 39 阅读 · 0 评论 -
(1)【相关角度运算】
【代码】(1)【相关角度运算】原创 2025-04-03 11:59:32 · 105 阅读 · 0 评论 -
【图形学】根据离散点拟合直线(附代码实现)
如下图,红色点L i ( x i , y i , z i ) 为给定的一系列三维空间点,根据给定三维空间点,拟合直线方程(3),也就是计算L 0和v ,使得在某种“距离”的度量下,达到最佳的直线拟合效果。可以得到结论:待拟合的直线经过一个点L 0 ,该点的坐标为所有给定点的坐标平均值。如下图所示,一旦确定直线的单位方向向量v \bm{v}v,则直线的方程便确定。f的最小值为矩阵S最小特征值对应的特征向量。直线方向向量v的求解问题转化为矩阵最小特征值对应的特征向量的求解问题!拟合得到迫近的直线方程。原创 2025-02-09 16:23:49 · 1314 阅读 · 0 评论 -
【图形学】向量叉乘(向量积)的几何意义与应用
矢量 是有 量值(长度)和 方向。两个矢量的叉积 a × b 是与这两个矢量垂直的 矢量。原创 2025-02-09 16:09:08 · 2046 阅读 · 0 评论 -
【图形学】向量点乘(数量积)的几何意义与应用
两个向量的点积(乘),记作 a · b。点积是个 标量 (普通的数,也称为 标量积)。原创 2025-02-09 15:58:39 · 1752 阅读 · 0 评论 -
【图形学】图形学基本线性变换:缩放、旋转、平移、切变、镜像
变换都可以使用以下表达式表示使用矩阵形式表示为继而表示为:输出坐标 = 变换矩阵 × 输入坐标 的形式满足以上条件的变换称为线性变换。原创 2025-02-09 15:50:14 · 1900 阅读 · 0 评论