一 、 集成学 习 思想概述
集 成 学 习 ( e ns e mb l e l e arni ng) 是 一 种 通过构 建 并 结 合 多 个个 体学 习 器 来 完 成 学 习 任务 的 机器学 习 方法 。 以 分类任务为 例 , 在对新 的 数据进 行分类时 , 通过训 练多 个 分类器 , 把这些 分类器 的 分类结果 按 照 不 同 的 组合方式得到 最终 的 分类结 果 , 通俗来讲 , 集成学 习 的 基本 思 想 就是我们生 活 中 所说 的 “ 三个臭皮 匠 , 顶个 诸葛 亮 ” 。 对于一 个 复杂 任务 , 将 多 个专家 的 判 断进行 适当 的 综合所得 出 的 判 断 , 要 比 其 中 任何一 个专家单独 的 判 断要好得 多 。 通过使用 多 个个体学 习 器共 同 决策 一 个实 例 的 分类从而提高分类器 的 泛 化 能力 。 目 前来讲 , 按 照个体 学 习 器组合方式 的 不 同 , 集 成学 习 可 分 为 以 下 三大流派 。 Baggi ng : 通过对 原 数据集进行有放 回 的抽 取 , 构