causallm不适用于上下文学习

causallm不适用于上下文学习

原创 森本悟 无数据不智能 2023-08-16 23:42 发表于广东

概述

该文研究的背景是在上下文学习中,基于Transformer的prefixLM模型在性能上优于使用自回归注意力机制的causalLM模型。

过去的方法中,主要使用的是causalLM模型,其采用自回归的注意力机制,限制了上下文样本之间的相互关注。由于这种限制,限制了模型的能力。因此,自然而然地提出了prefixLM模型,允许上下文样本之间进行全局的注意力。这种方法在直觉上是合理的,并在实证研究中取得了良好的表现。

本文采用理论分析的方法,通过对prefixLM和causalLM在特定参数构建下的收敛行为进行分析。研究结果表明,虽然两种语言模型的收敛速率是线性的,但是prefixLM模型收敛到线性回归的最优解,而causalLM模型的收敛动态遵循在线梯度下降算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值