合成数据如何影响大语言模型?深度剖析三大关键特性
原创 圈姐卡米儿 互联网持续学习圈 2024年12月18日 18:40 上海
大语言模型(LLMs)的发展日新月异,其性能高度依赖数据的质量、多样性和复杂性(QDC)。今天带来的这篇论文,深入研究了合成数据的 QDC 特性对大语言模型性能的影响,为优化模型训练提供了重要参考。
论文地址:https://arxiv.org/pdf/2412.02980
研究背景与目的
合成数据在增强大语言模型能力方面潜力巨大,但现有方法缺乏对数据特性如何影响下游泛化的深入理解。论文旨在通过剖析合成数据的 QDC 特性,明确其对模型性能的影响,优化合成数据生成算法,助力模型发展。
质量、多样性、复杂性的定义与度量
- 数据集质量
衡量数据与目标任务的 “噪声” 或 “正确性” 程度。实现