全网最速 DeepSeek-V3-0324 写代码实测!

全网最速 DeepSeek-V3-0324 写代码实测!

karminski-牙医 NLP轻松谈 2025年03月25日 09:29 北京

给大家带来全网最速 DeepSeek-V3-0324 写代码实测!

直接说结论—— 超越 DeepSeek-R1!甚至超越 Claude-3.7! 难以想象这还不是一个 Thinking 模型!

DeepSeek-V3-0324 目前以 328.3 分在 KCORES 大模型竞技场排名第三,仅次于 claude-3.7-sonnet-thinking 和 claude-3.5 (没错 claude-3.5 在我们的测试下比  claude-3.7 要好一些)。

图片


四项评测中:

20 小球碰撞测试 ,肉眼可见的进步,之前 DeepSeek-V3 的小球挤成一团,现在物理运动模拟得非常好,仅因掉出了7边形扣了5分,项目排名第5 

图片

图片

mandelbrot-set-meet-libai 测试 ,没有过多变化,分数较DeepSeek-V3 低了2分,主要还是将渲染方向搞反了以至于拖累了渲染性能,但是完成度可以看到比之前高很多。项目排名第12 

图片

图片

火星任务测试,巨大的提升,这次星球,图例均渲染正确,甚至发射和返回窗口计算也有很大进步!项目排名并列第2 

图片

图片

九大行星模拟测试,这个是史诗级提升,这是测试的25个模型中,唯一一个画了土星环的大模型!(画土星环就如同画时钟要写3,6,9,12. 画苹果要有个梗一样)项目排名并列第13,主要还是地球轨道周期没写对 

图片

图片

总体而言,DeepSeek-V3-0324 能力十分可怕,甚至这还都不是 DeepSeek-V4,更不是 DeepSeek-R2 !我现在十分期待 DeepSeek-R2 的发布了!

评测是开源的哦,地址:github.com/KCORES/kcores-LLM-Arena

### DeepSeek-V3DeepSeek-V1 的区别 #### 架构改进 DeepSeek-V3 基本架构依然基于 Transformer 框架,但在多个方面进行了优化和增强。相比之下,DeepSeek-V1 可能采用较为基础的 Transformer 结构,而 DeepSeek-V3 引入了 MLA (Multi-Level Aggregation) 和 MoE (Mixture of Experts),这些组件已经在 DeepSeek-V2 中得到验证并进一步发展[^1]。 #### 负载均衡策略 特别值得注意的是,在负载平衡方面,DeepSeek-V3 新增了一种无辅助损失的负载平衡策略来缓解因确保负载平衡而导致的性能下降问题。这种策略有助于提升系统的整体效率和稳定性。而在早期版本如 DeepSeek-V1 中可能并未涉及此类高级负载管理机制。 #### 接口兼容性和API支持 对于外部应用而言,从 V1 到 V3 的转变不仅体现在内部算法上的进步上;在对外服务层面也有所体现。例如,DeepSeek API 已经完全适配 OpenAI 兼容的标准接口形式,并允许开发者通过简单的配置调整即可接入最新的 DeepSeek-V3 模型实例。这意味着即使是在原有基础上构建的应用程序也能轻松迁移到新版本而不必担心接口不一致带来的麻烦[^2]。 #### 专家系统进化 另外一个重要变化在于前馈神经网络部分的设计理念更新——即所谓的 MixFFN 或者说混合专家模块。相较于之前版本里相对简单粗放式的处理方式,现在采取更加精细且高效的专家分割方法以及共享专家隔离技术,从而显著提高了各子模型间的协作效能与资源利用率[^3]。 综上所述,从 DeepSeek-V1 发展到 DeepSeek-V3 不仅仅是功能特性的增加或改良,更重要的是整个体系结构和技术路线都经历了深刻的变革和发展,使得新版能够在保持良好向后兼容性的同时提供更为强大稳定的服务能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值