BART论文解读

BART是一种由FacebookAI提出的预训练模型,它结合了双向和自回归特性,通过破坏并重构文本来学习。模型在文本生成、翻译和理解任务上表现出色,其预训练过程包括TokenMasking、TokenDeletion等噪声处理方式。在序列分类、序列标注和序列生成任务上,BART可以通过微调进行适应。实验结果显示,BART在多项任务上达到了最先进的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 概述

  • 全称:Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension。BART来源于Bidirectional and Auto-Regressive Transformers
  • 发表时间: 2019.10.29
  • 团队:Facebook AI

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值