翻译|深度对话 Satya Nadella:微软的 AI 战略与未来

翻译|深度对话 Satya Nadella:微软的 AI 战略与未来

原创 chouti 涌现聚点 2024年12月25日 15:35 浙江

深度对话 Satya Nadella:微软的 AI 战略与未来

核心观点

  • 微软自 1992 年至今的历程中,经历了多次技术浪潮的更迭,包括 Windows、互联网、移动、云计算和人工智能(AI)。

  • Satya Nadella 在 2014 年接任 CEO 后,成功带领微软转型,市值增长近 3 万亿美元,其关键在于识别公司的结构性优势、获得合作伙伴和客户的信任,以及推动企业文化向“成长型思维”转变。

  • 微软很早就意识到 AI 的潜力,并与 OpenAI 建立了战略合作关系,在 AI 领域取得了领先地位,特别是在企业级 AI 应用方面。

  • 当前 AI 领域的竞争异常激烈,各大科技巨头都在积极布局,但不太可能出现赢家通吃的局面,因为不同层级(基础设施、模型、应用)都存在机会。

  • AI 正在重塑企业运营模式,特别是知识型工作,微软正利用 AI 提高自身效率,并帮助客户实现业务流程的智能化。

开场:AI 时代的“OpenAI 时刻”

,时长01:24:41

Brad Gerstner 我认为这个时代最具代表性的公司已经诞生,那就是 OpenAI。在某种程度上,它就像是这个时代的谷歌、微软,或者 Meta。

回顾 Nadella 的微软 CEO 之旅:转型与增长

Brad Gerstner: 能与你对话真是太好了。我和 Bill 回顾你在微软担任 CEO 的这段时间时,都感到非常震惊。你 1992 年加入微软,2007 年负责在线业务,2009 年推出 Bing 搜索,2011 年接管服务器业务并推出了 Azure,2014 年成为 CEO。就在你上任前不久,一篇题为《微软已无关紧要》的文章刚刚发表。自那时以来,你将 Azure 的营收从 10 亿美元提升至 660 亿美元,公司总收入增长了 2.5 倍,总利润增长超过 3 倍,股价上涨近 10 倍,为微软股东增加了近 3 万亿美元的价值。回首过去十年,你认为当时你能做的最大改变是什么?这些改变解锁了微软的价值,改变了公司的发展轨迹,取得了如此非凡的成功。

Satya Nadella:  Brad,我一直将从 1992 年到现在这段时间视为一个连续的整体,尽管 2014 年对我而言是一个重大转折点,伴随着巨大的责任。我主要通过模式识别来判断我们何时成功、何时失败,然后多做前者,少做后者。因为我完整经历了这些阶段。1992 年我加入微软时,Windows 3.1 刚刚发布。Windows 3.1 是在 1992 年 5 月发布的,而我在同年 11 月加入。实际上,我当时在 Sun 公司工作,并考虑去读商学院,但我收到了微软的 offer。当时招聘我的老板说服我加入了微软,这是我做过的最好决定。因为真正说服我的是 1991 年在莫斯克尼中心(Moscone Center)举行的专业开发者大会(PDC),我亲眼看到了 Windows NT(当时还不叫 Windows NT)和 x86 架构。我当时就想,客户端领域发生的事情也将在服务器领域发生,这是一家平台公司和合作伙伴公司,他们将乘风破浪。这就是当时的判断。当然,后来互联网出现了,我们也成功地完成了转型,在很多方面都做对了。例如,我们认识到了浏览器的重要性,参与了竞争,并最终做好了浏览器。但我们错过了搜索。我们当时觉得浏览器才是最重要的,因为它更像一个操作系统,但我们没有理解互联网新的组织层——搜索,这个新的类别。后来,我们在移动领域也有所涉猎,但显然没有做好。iPhone 的出现对我们冲击很大。但我们抓住了云计算的机遇。所以,如果我们回顾一下,现在我们正处于第四次浪潮——AI。在所有这些阶段中,我认为最重要的是,不要因为别人做成了某件事,我们就盲目跟风。有时候,快速跟随是可行的,而且也确实奏效,但不应该出于嫉妒去做事,这是我们学到的最深刻的教训之一。做一件事,是因为你有资格去做,并且你能做得更好,这两点对我来说都很重要。就像品牌许可,Jeffrey Moore 曾经对我说过一句话:“为什么你不去做那些你的客户期望你做的事情呢?”我非常喜欢这句话。云计算就是一个很好的例子。当我第一次负责 Azure 时,人们告诉我,这是一个赢家通吃的市场,大局已定,亚马逊已经赢了。我从来不相信,因为毕竟我在服务器领域与 Oracle 和 IBM 竞争过,我一直认为,在基础设施领域,永远不会出现赢家通吃的局面。你所需要做的,就是带着你的价值主张进入游戏。对我而言,所有这些转型都是关于确保你认识到自身的结构性地位,真正理解你从那些希望你赢的合作伙伴和客户那里获得了哪些许可,并首先去做那些显而易见的事情。你可以说这是战略的基本原则,但这是我所感受到的,至少我认为这是关键。当然,还有一些因素,正如你所说,Brad,那就是目标感、使命感,以及你所需要的企业文化。所有这些都是必要条件,让你有机会去尝试。但我想说,通过认识到你的结构性地位和许可来制定正确的战略,这可能是我做得比较好的地方。

CEO 遴选:十页备忘录与微软的战略构想

Bill Gurley: 在我们深入探讨 AI 之前,我想问几个关于转型的问题。正如 Brad 所说,你可能是史上最佳的 CEO 聘任,3 万亿美元的市值增长是无与伦比的。我读到一篇文章,说你给遴选委员会写了一份长达 10 页的备忘录,这是真的吗?备忘录里写了什么?

Satya Nadella: 是的,是真的。我们的 CEO 遴选过程非常公开。坦率地说,当时对我来说,我能成为 CEO 并非显而易见。首先,我从未想过 Bill 会离开,其次,我也没想过 Steve 会离开。你加入微软时,不会想到创始人会退休,然后会有一个职位空缺,你可以申请。在微软的成长过程中,这不是我的思维模式。所以,当 Steve 决定退休时(我记得是在 2013 年 8 月),这对我来说是一个非常大的冲击。当时,我正在负责我们的服务器和工具业务,Azure 也在其中,我干得非常开心。我甚至没有主动提出要成为 CEO,因为我根本没想过这会发生。后来,董事会来找我,当时还有很多其他的候选人,甚至包括微软内部的。在遴选过程的某个阶段,他们要求我们写一份备忘录。坦率地说,这份备忘录非常有趣,我在里面说的每一件事都应验了。事实上,我在备忘录中用过的一个术语,后来在我发给全公司的第一封邮件中也用到了,那就是“环境智能”(ambient intelligence)和“普适计算”(ubiquitous computing)。后来我把它简化成了“移动优先,云优先”,因为我的公关人员告诉我,“这到底是什么?没人会理解什么是环境计算和普适计算。”但“移动优先,云优先”就是关于如何真正把握住未来的发展趋势,理解我们的结构性地位,思考微软云,我们拥有哪些资产,为什么 M365 如此重要。事实上,我一直反对用市场细分的方式来看待我们的云业务。市场通常这样细分:“这是基础设施即服务(IaaS)。”即使是 Brad 刚才向我描述的方式,我也从未这样看待过。我不会这样分配我的资本:“这是 Azure 的资本,这是 M365 的资本,这是游戏的资本。”我更倾向于认为,我们有一个云基础设施,这是公司的核心理论。在这个基础上,我有一系列的工作负载,其中一个恰好是 Azure,其他的包括 M365、Dynamics、游戏等等。这些都在那份备忘录里,而且基本上都实现了。当时的一个假设是,我们在服务器和客户端业务上有 98% 到 99% 的毛利率,人们说:“好消息是,你们现在可以转向云业务,也许能获得一些利润。”这就是当时的转型。我的直觉是,毛利率会下降,但市场规模(TAM)会更大。我们将向小型企业销售更多产品,总体上我们将销售更多,甚至在追加销售方面也是如此,因为消费会增加。例如,我们以前销售了一些 Exchange 产品,但现在想想,Exchange、SharePoint、Teams,所有这些都扩展了。这就是我在备忘录中的基本思路。

文化重塑:从“无所不知”到“无所不学”

Bill Gurley:  备忘录中是否涉及企业文化转变的内容?世界上有很多 CEO 的聘任,也有很多首席运营官(COO)的聘任,但很多都失败了。正如 Brad 所指出的,当时有人认为微软会成为下一个 IBM 或 DEC,它的好日子已经到头了。你是如何做的?对于那些试图重塑企业文化并推动其朝着不同方向发展的新任 CEO,你有什么建议?

Satya Nadella: 我认为我的一个优势在于,我是一个彻头彻尾的“内部人士”。我在微软度过了几乎整个职业生涯。所以,如果我要批评我们的文化,那也是在批评我自己。我从来不觉得像是从外部来批评这里的人,更多的是把矛头指向我自己,因为我本身就是这种文化的一部分。我还清楚地记得,微软第一次成为市值最高的公司时,我们所有人在园区里,包括我在内,都昂首阔步,神采飞扬,好像我们是人类历史上最了不起的存在,好像我们的才华终于在市值上得到了体现。我一直牢记着,这正是我们需要避免的文化。我常说,从古希腊到现代硅谷,只有一件事能让文明、国家和公司衰落,那就是傲慢。我妻子在我成为 CEO 的几年前向我介绍了一本书,卡罗尔·德韦克的《终身成长》(Mindset),我当时更多地是从子女教育和育儿的角度来阅读这本书的。我当时就想,这本书真是太棒了,我们都在谈论学习和学习型文化等等,这是我们能选择的最好的文化基因。我将我们在文化上的成功很大程度上归功于这个基因。它的另一个好处是,它没有被微软注册商标,也不是 CEO 的什么新教条。它与工作和生活息息相关,你可以成为一个更好的父母、更好的伴侣、更好的朋友、邻居、管理者和领导者。所以我们选择了它,我一直将其描述为“从无所不知(know-it-all)转变为无所不学(learn-it-all)”。这是一个你永远无法到达的终点,因为当你声称自己拥有成长型思维时,就意味着你并不具备它。它对我们非常有帮助。就像所有的文化变革一样,你需要给它时间、空间和呼吸的空间,而且它既是自上而下的,也是自下而上的,最终在中层汇合。我参加公司的任何会议,甚至是我的高管团队会议,我都会从使命和文化开始谈起,这是两个最重要的部分。我一直非常严格地遵循我的框架,就像你提到的那份备忘录,在过去的将近 11 年里,基本框架都是一样的:使命、文化,这是我们的世界观——环境智能和普适计算,然后是一系列具体的产品和战略。我非常谨慎地选择每一个词,我会反复强调,直到我自己都感到厌烦,但我会一直坚持下去。

洞察先机:微软的 AI 战略布局与 OpenAI 的合作

Brad Gerstner:  你提到了我们经历过的阶段性转变。我听你说过,作为一家大型平台公司,大部分的价值获取都发生在阶段性转变的前三四年,那时市场地位已经确立。我听你说,微软错过了搜索,很大程度上错过了移动互联网,又“赶上了云计算的末班车”。所以,当你开始思考下一个大的阶段性转变时,你和团队中的其他人,包括 Kevin Scott,似乎很早就嗅到了谷歌可能凭借 DeepMind 在 AI 领域处于领先地位,于是你决定投资 OpenAI。是什么让你确信这个方向是正确的,而不是你内部正在进行的 AI 研究?

Satya Nadella:  这是一个很好的问题。首先,我们在 AI 领域已经深耕了很久。当 Bill 在 1995 年创立微软研究院(MSR)时,第一个小组,他一直对自然用户界面很感兴趣,第一个小组是语音识别。Rick Rashid 当时在那里,李开复也在这里工作过。我们当时非常专注于攻克自然用户界面,语言一直是我们的重点。实际上,Hinton 也曾在 MSR 工作过,深度神经网络(DNN)的一些早期工作就是他在 MSR 驻留期间完成的,后来谷歌聘用了他。所以,我们甚至在 2010 年代早期错过了一些本可以加倍投入的机会,而谷歌却在同一时间加大了投入,甚至收购了 DeepMind。这让我非常困扰。但我一直想专注于,例如,Skype 翻译是我最先关注的事情之一,因为它非常酷,这是你第一次可以看到迁移学习(transfer learning)发挥作用。你可以在一个语言对上训练它,它在另一个语言对上也能表现得更好,这是我们第一次可以说,机器翻译以及 DNN 是与众不同的。从那时起,我就和 Kevin 一样,对语言着迷。实际上,第一次,Elon 和 Sam 当时正在寻求 Azure 的信用额度,我们给了他们一些额度。那时他们更专注于强化学习(RL)和 DOTA 2 等等,那也很有趣。然后我们停止了合作,我甚至不记得具体发生了什么,然后他们去了谷歌云平台(GCP),然后他们又回来谈论他们想在语言方面做些什么。就是那一刻,他们谈到了 Transformer 和自然语言。因为我一直觉得,如果有一种方法能够在这种模型架构上取得非线性突破。你知道,Bill,你总是在我的职业生涯中说,在数字领域只有一个类别,那就是信息管理。他看待这个问题的方式是,你对世界进行模式化(schematize),把人、地点、事物模式化,建立一个模式。我们走了很多弯路,有一个非常臭名昭著的项目叫做 WinFS,它的目标就是模式化一切,然后你就能理解所有信息,但这是不可能做到的。所以,你需要一些突破,我们认为,也许实现这一目标的方法就是我们如何模式化。毕竟,人脑是通过语言、内心独白、推理等等来实现的。总之,这就是我选择 OpenAI 的原因。坦率地说,Sam、Greg 和团队的雄心壮志也是原因之一。实际上,我读到的第一篇关于规模化(scaling)的备忘录,奇怪的是,是 Dario 在 OpenAI 时和 Ilya 写的。这就是我决定押注的原因,如果它将有指数级的性能提升,为什么不全力以赴,给它一个真正的机会呢?当然,一旦我们开始看到它在 GitHub Copilot 等产品上发挥作用,加倍投入就很容易了。但这就是最初的直觉。

AI 竞赛格局:竞争、合作与市场机遇

Bill Gurley:  在之前的阶段性转变中,一些现有企业没有足够快地跟上,你甚至谈到微软可能错过了移动或搜索等领域。我可以说,尤其是我年纪大了,我见证过这些转变,每个人都对这次的 AI 浪潮保持警惕,或者说,这是有史以来最警惕的一次,每个人都精心策划,几乎同时站在了起跑线上。我很好奇你是否同意这一点,以及你如何看待这场竞赛中的关键参与者,比如谷歌、亚马逊、拥有 Llama 的 Meta,以及埃隆也加入了这场游戏。

Satya Nadella:  这是一个有趣的问题。关于这一点,我一直在思考,如果你回顾 90 年代末,当时只有微软,然后是日光(Daylight),再然后是其他公司。有趣的是,现在人们谈论“七巨头”(mag 7),但实际上可能不止这些。正如你所说,每个人都对此保持警惕,他们都拥有惊人的资产负债表。甚至,我认为,如果你把 OpenAI 也算进来,你可以说现在是“八巨头”(mag 8)。因为我认为,这个时代的代表性公司已经诞生,那就是 OpenAI。在某种程度上,它就像是这个时代的谷歌、微软,或者 Meta。所以,有几点需要说明。因此,我认为这将是一个竞争非常激烈的市场。我也不认为这将是一个赢家通吃的市场。可能有一些领域会是赢家通吃,但在超大规模基础设施方面,绝对不是。世界将需要多个前沿模型提供商,分布在全球各地。事实上,我认为微软拥有的最佳结构性地位之一是,因为如果你还记得的话,Azure 的结构略有不同。我们为企业工作负载构建了 Azure,具有大量的数据驻留,我们有 60 多个区域,比其他任何公司都多。所以,我们并不是为了一个大型应用而构建我们的云,而是为了大量异构的企业工作负载而构建的,我认为从长远来看,这将是所有推理需求所在的地方,与数据、应用服务器等等相连接。所以,我认为在基础设施层将有多个赢家。即使在模型层,每个超大规模公司都将拥有一堆模型,并且将有一个围绕多模型的应用服务器。就像今天的每个应用,甚至包括 Copilot,它只是一个多模型应用。实际上,有一个全新的应用服务器,就像以前有移动应用服务器、Web 应用服务器一样,现在有一个 AI 应用服务器。对我们来说,那就是 Foundry,我们正在构建一个,其他人也会构建,将会有多个这样的应用服务器。然后在应用层,网络效应总是存在于软件层,也就是应用层。在消费者和企业领域将会有不同的网络效应等等。所以,回到你的基本观点,我认为你必须从结构上按层级进行分析,在这七八九十家公司之间,在不同的层级上都将存在激烈的竞争。我总是对我们的团队说,要警惕那些后来居上者,这就是你所参与的游戏,你总是要关注谁是那个突然冒出来的新创业者。至少我认为,OpenAI 就是这样一家公司,它现在已经具备了规模化的速度。

C端竞争:Bing、ChatGPT 与搜索的未来

Brad Gerstner:  让我们来聊聊应用层,先从消费者 AI 开始。Bing 是一个非常庞大的业务,你和我讨论过,10 个蓝色链接(10 Blue Links)可能是资本主义历史上最好的商业模式,但它正受到一种新的模式的巨大威胁,在这种模式下,消费者只想要答案。例如,我的孩子们会说,既然我可以直接得到答案,为什么还要去搜索引擎呢?所以,你认为,首先,在这个“答案时代”,谷歌和 Bing 能否继续发展传统的搜索业务?其次,Bing 需要做什么,或者说 Mustafa 领导下的消费者业务需要做什么,才能与 ChatGPT 竞争?ChatGPT 看起来已经在消费者领域取得了突破。

Satya Nadella:  我认为首先是你最后说的,聊天(chat)满足答案需求,这就是 ChatGPT,无论是品牌还是产品。而且它正在变得有状态(stateful)。搜索以前是无状态的,虽然有搜索历史,但我认为这些代理(agents)将更加有状态。这就是为什么我如此激动。我一直试图与苹果达成搜索协议,已经有 10 年了。所以,当 Tim 最终与 Sam 达成协议时,我是最激动的人,因为这比任何其他公司达成协议都要好。因为我们与 OpenAI 有着商业和投资关系。与此同时,分发渠道很重要。这是谷歌的巨大优势所在,他们在苹果上拥有分发渠道,他们是默认选项,他们在安卓上也是默认选项,他们的触角非常广。因此,我认为习惯不会消失。你多少次只是打开浏览器,在 URL 栏中输入你的查询?即使现在我想使用 Copilot,但我的大部分使用仍然是 Copilot。如果我必须在 Bing 和 Copilot 之间做出选择,这很有趣,一些导航类的查询我会使用 Bing,其他几乎所有事情我都会使用 Copilot。我认为这种转变正在普遍发生。我们可能还需要一两个这样的代理,比如购物或旅行代理,才能真正撼动传统的搜索,尤其是当一些商业查询也迁移到聊天中时。现在,商业模式基本上还能维持,因为商业意图还没有迁移,但一旦商业意图迁移,情况就会突然改变。所以,我认为是的,这是一个长期趋势。我们正在管理它,Mustafa 的团队有三个产品:Bing、MSN 和 Copilot。他有一个清晰的愿景,这三个产品是一个生态系统,一个是信息流(feed),一个是传统意义上的搜索,另一个是这个新的代理界面。它们都与内容提供商有社会契约,我们需要引导流量,我们需要有付费墙,也许我们需要有广告支持的模式,所有这些。这就是我们正在努力管理的。我们有自己的分发渠道,我们仍然拥有的一个优势是 Windows。我们可以重新争夺市场,我们赢得了与网景(Netscape)的浏览器大战,却输给了谷歌。现在,我们正在以一种有趣的方式夺回市场,无论是通过 Edge 还是 Copilot。现在,即使是 Gemini 也必须努力争取,至少对 Windows 来说,好消息是它是一个开放的系统。ChatGPT 有机会,Gemini 也有机会,你不需要打电话给微软,你可以尽你所能,在我们的平台上运行。但这也意味着,我们也可以重新获得市场份额。有时候,失去市场份额是件好事,因为你可以重新赢回来。对我来说,即使是 Windows 的分发渠道,我总是说,谷歌在 Windows 上赚的钱比整个微软都多,这是真的。我说,这对微软的股东来说是最好的消息,我们输得如此彻底,以至于我们现在可以去竞争并赢回一些份额。

代理时代:互操作性、数据所有权与商业模式

Bill Gurley: 每个人都在谈论这些代理,如果你稍微展望一下未来,你可以想象各种各样的参与者都希望能够在其他应用和其他数据上执行操作,这些应用和数据可能位于某个系统上。微软处于一个有趣的位置,因为你控制着 Windows 生态系统,但你在 iPhone 生态系统或安卓生态系统上也有应用。你是如何看待这个问题的?这既是一个服务条款的问题,也是一个合作伙伴关系的问题。苹果会允许微软控制 iOS 上的其他应用吗?微软会允许 ChatGPT 在 Windows 操作系统上实例化应用并从应用中获取数据吗?我的问题还可以延伸到搜索和商业领域,比如,Booking.com 会允许 Gemini 在未经其许可或不知情的情况下在其平台上执行交易吗?

Satya Nadella: 我认为这是最有趣的问题。目前还不清楚这将如何发生。有一种稍微老派的思考方式,各种业务应用程序是如何实现互操作的,它们使用连接器(connectors)来管理互操作,而且人们还拥有连接器许可证,所以出现了一种商业模式。SAP 是最典型的例子之一,你可以说,只要你有连接器,你就可以访问 SAP 的数据。当代理与代理之间需要接口时,类似的情况将会出现。目前还不清楚在消费者领域会发生什么,因为消费者领域的价值交换主要是广告和流量等等,其中一些在代理时代会消失。所以,我认为消费者领域的商业模式对我来说还不太清楚。但在企业领域,我认为将会发生的是,每个人都会说,为了让你能够在我的操作空间中执行操作,或者从我的模式中获取数据,你需要某种形式的接口连接到我的代理,这需要获得许可。例如,今天当我在微软使用 Copilot 时,我连接到了 Adobe、我的 SAP 实例,当然还有我们的 CRM 实例 Dynamics。我们什么时候真正使用过业务应用程序?我们授权了所有这些 SaaS 应用程序,但我们几乎不使用它们,有人在组织中向其中输入数据。但在 AI 时代,数据的使用强度会增加,因为所有这些数据现在都触手可及。我可以毫不费力地说:“我要和 Bill 开会,告诉我所有关于 Benchmark 投资的公司的情况。”它会同时从网络和我的 CRM 数据库中提取信息,整理好,给我一个备忘录等等。所以,所有这些都可以被我们以及这些连接器货币化。但更明确地说,你会允许 ChatGPT 在 Windows 操作系统上随意打开应用并执行操作吗?这是一个有趣的问题。这种拥有最高权限的计算机使用方式,谁来授权呢?是用户还是操作系统?在 Windows 上,坦率地说,除了设置一些安全护栏之外,我无法阻止这种情况。我可以采取一些措施,因为我最担心的是安全风险,如果下载了恶意软件,而这个恶意软件开始执行操作,那就真的很危险了。所以,我认为我们将在操作系统中内置这些功能,即一些提升的访问权限和特权,以便这种计算机使用能够发生。但在一天结束时,在一个像 Windows 这样的开放平台上,用户将拥有控制权。我相信苹果和谷歌将拥有更多的控制权,所以他们不会允许这样做。你可以说这是他们的优势,或者,取决于所有这些规则的最终确定,这将是一件有趣的事情。

Bill Gurley: 我们可以反过来思考这个问题。你会允许安卓操作系统,或者我们叫它“安卓 AI”或“iOS AI”,通过微软的客户端在智能手机上读取电子邮件吗?

Satya Nadella: 举例来说,今天我经常思考的一个问题是,这种程度的开放究竟是会导致价值流失,还是实际上对我们有利。我们授权了 Outlook 的同步功能给苹果,用于 Apple Mail。这是一个值得玩味的案例,我认为可能存在一定的价值泄漏,但与此同时,我认为这也是我们能够保住 Exchange 的原因之一。如果我们当初没有这样做,问题可能会更加严重。回到你刚才的问题,Bill,我们正在围绕 Microsoft 365 构建一个信任体系。这是必要的,因为我们不能简单地说,任何代理都可以进来做任何事情,因为首先,这不是我们的数据,这是我们客户的数据。因此,客户必须授权,客户的 IT 人员必须授权,而不是我可以设置一个通用的开关。其次,它必须有一个信任边界。所以,我认为我们将要做的是,类似于苹果最近发布的“苹果智能”(Apple Intelligence)所采用的策略,我们将围绕 M365 做类似的事情。

AI 的未来:记忆、行动与企业级应用

Brad Gerstner: 我强烈建议大家下载并体验一下,非常有趣。Mustafa 曾说过,2025 年将是“无限记忆”之年。Bill 和我从今年年初就开始讨论,我们认为下一个 10 倍的提升,听起来你也同意,在 GPT 上将是这种持久的记忆,结合代表我们采取行动的能力。我们已经看到了记忆的初步应用,我也非常确信,到 2025 年,这个问题似乎已经得到了很好的解决。但是关于“行动”的问题,我什么时候可以说,“ChatGPT,帮我预订下周二西雅图的四季酒店,价格最低的。”Bill 和我反复讨论过这个问题,看起来“计算机使用”是早期的测试案例。你有没有感觉,从现在来看,这似乎是一个难题?

Satya Nadella: 最开放的行动空间仍然很难。但正如你所说,除了我所说的规模化法则本身以及原始模型的能力之外,还有两三件事真的令人兴奋。一个是记忆,另一个是工具使用或行动,还有一个是权限。你可以访问什么,你需要能够以安全的方式访问内容,需要有人对其进行治理等等。如果你把这三件事放在一起,这个代理将变得更加可治理,当涉及到行动时,它是可验证的,然后它还有记忆,那么我认为你将处于一个非常不同的境地,可以做更多自主的工作。我仍然认为,我一直喜欢把 Copilot 作为 AI 的用户界面,因为即使在一个完全自主的世界里,你仍然会时不时地提出异常、请求许可、请求调用等等。因此,这个用户界面层将成为组织层。实际上,这就是为什么我们把 Copilot 看作是工作、工作产出和工作流程的组织层。但回到你的基本观点,我不认为模型,即使是 4.0,甚至不用说 o1,4.0 在函数调用方面已经相当不错了。所以你可以在企业环境中做更多的事情,比在消费者领域更多,因为消费者领域的 Web 函数调用非常困难。在开放的 Web 环境中,你可以为几个网站做函数调用,但一旦你说“帮我在任何网站上订一张票”,如果后端有模式更改等等,它就会出错。你可以训练它,这就是我认为 o1 可以改进的地方,如果它是一个可验证的、可自动分级的、按部就班的过程。但我认为我们还需要一到两年的时间才能做更多的事情。但至少从企业角度来看,构建销售代理、营销代理、供应链代理,这些代理可以执行更多自主任务。我们在 Dynamics 中内置了 10 到 15 个这样的代理,甚至可以查看我的供应商沟通,自动处理我的供应商沟通,更新我的数据库,更改我的库存,我的应用这些都是你今天可以做的事情。Mustafa 发表了关于近乎无限记忆的评论,我相信你听过或者在内部听到过,你能对此做一些澄清吗?还是说未来会有更多信息?

Satya Nadella:  在某种程度上,你有了一个关于记忆的类型系统。这并不意味着每次我启动你,我就能理解这个想法。

Brad Gerstner:  他让你听起来觉得你们在这方面有内部技术突破。

Satya Nadella:  我们有一个开源项目。是之前做所有 TypeScript 工作的人在做这个。我们正在尝试做的是,从本质上获取记忆并将其模式化,使其可用,这样你就可以每次我启动一个,让我们假设我在某个新产品上,我知道如何基于我做过的所有其他事情进行聚类,然后进行类型匹配等等。我认为这是我们构建记忆系统的一个好方法。

微软的企业级 AI 业务:现状与策略

Brad Gerstner:  让我们把话题转向企业级 AI。据报道,微软的 AI 业务规模已经达到约 100 亿美元,你曾说过这都是推理业务,而且你们实际上并没有将原始 GPU 租给其他人进行训练,因为你们的推理需求非常高。所以,当我们思考这个问题时,外界有很多怀疑,关于主要工作负载是否正在迁移。如果你能谈谈人们现在正在使用的关键营收产品,以及这些产品是如何推动你们的推理收入的,以及这些与亚马逊或谷歌的异同,我会很感兴趣。

Satya Nadella:  我认为这是一个很好的问题。对我们来说,这件事的进展是这样的,你要记住,我们与 OpenAI 的大部分训练工作更像是一种投资逻辑。所以它更多地体现在我们的其他收入中,而不是我们的季度业绩中。这意味着唯一显示出来的可能是

Brad Gerstner:  其他收入或亏损。

Satya Nadella:  对,没错。现在是这样的。所以,大部分收入,或者说所有收入,基本上都是我们的 API 业务,或者实际上,正如你所说,ChatGPT 的推理成本也在那里,这是一个不同的部分。事实上,这个时代的热门应用是 ChatGPT、Copilot、GitHub Copilot,以及 OpenAI 和 Azure OpenAI 的 API。如果你要列出 10 个最热门的应用,这些可能会占到四五个。因此,这是最大的驱动力。我们和 OpenAI 拥有的优势是,我们有两年的先发优势,几乎没有受到挑战。正如 Bill 所说,每个人都意识到了这一点,而且我认为可能再也不会有这样的两年领先优势了,谁知道呢,也许有人发布了一个样本,突然间震惊了世界。但即便如此,我认为不太可能通过某个基础模型建立这种类型的领先优势。但我们确实拥有这个优势,这是我们与 OpenAI 合作的巨大优势。OpenAI 能够通过 ChatGPT 真正建立起这种规模化的速度。但在 API 方面,我们获得的最大好处是,Shopify、Stripe 或 Spotify,这些公司以前都不是 Azure 的客户,他们都是 GCP 或 AWS 的客户。所以突然之间,我们接触到了更多、更多的企业标识,他们都在以某种形式使用 Azure 等等。所以,这是其中之一。当涉及到传统的企业时,我认为它正在规模化。实际上,人们一方面在试用 Copilot,另一方面在使用 Foundry 构建代理。但这些都是设计上的胜利和项目上的胜利,它们很慢,但它们正在开始规模化。同样,我们在这方面有两年的先发优势,我更喜欢这项业务。这也是我们避免逆向选择问题的原因之一,因为这里会有很多科技初创公司都在寻找他们的 H100 配额,而且都是小批量的。看到 Sun Microsystems 在 .com 时代发生的事情,我总是担心这一点。如果你只是追逐每个构建模型的人,甚至在投资者方面,我认为情绪正在发生变化,现在人们希望更加轻资产,并在其他人的模型之上构建等等。如果是这样的话,每个寻找 H100 的人都将不再想寻找它。这就是我们一直有选择性的原因。

Bill Gurley:  你是说对其他人来说,那些模型的训练和那些模型集群在他们的 AI 收入中占了更大的比例,而不是你们的?

Satya Nadella:  我不知道。我是在替别人说话,我只是回过头来看,还有哪些其他热门应用?我不知道它们是什么。它们在哪里运行什么模型?它们在哪里运行这些模型?显然谷歌的 Gemini,我不知道当我查看这些 AI 产品的日活跃用户(DAU)数据时,有 ChatGPT,即使是 Gemini,我对 Gemini 的数据感到非常惊讶。显然,我认为它会增长,因为它拥有固有的分发渠道。但有趣的是,实际上没有那么多。实际上,我们更多地谈论 AI 的规模,但没有那么多热门应用。有 ChatGPT、GitHub Copilot、Copilot 和 Gemini,我认为这四个是 DAU 超过 500 万的应用。你还能想到其他的吗?

Bill Gurley:  我认为有很多这样的初创公司用例,我认为它们开始获得一些关注,很多都是自下而上构建在 Llama 之上的。但如果你说,还有 Meta,如果你说还有 10 个,有哪些应用的 DAU 超过 500 万?

Brad Gerstner:  我想扎克伯格会说 Meta AI 肯定有更多。但我想你是对的,就非关联应用而言,你已经说出了它们的名字。而且扎克的东西都运行在他自己的集群上,他没有在公共云上运行。

生产力工具的 AI 重塑:以 Copilot 为例

Bill Gurley:  在企业方面,显然编码领域正在蓬勃发展,你们做得很好,而且有很多风险投资支持的参与者。在一些生产力应用方面,我有一个关于 Copilot 方法的问题。Mark Benioff 对此一直持批评态度,称其为“Clippy 2”或其他什么。你是否担心有人可能会从第一性原理出发,从头开始思考 AI,而且,比如说,Excel 电子表格中的一些基础设施,如果从 AI 为先的角度重新设计产品,可能是不必要的?同样的情况也可能发生在 CRM 上,有很多字段和任务可能可以被用户忽略。

Satya Nadella:  这是一个非常重要的问题。关于 SaaS 应用程序或业务应用程序,我先说说我们自己的 Dynamics 产品。至少我们采取的方法是,我认为业务应用程序存在的概念可能会在代理时代崩溃。因为如果你想想看,它们本质上是带有大量业务逻辑的 Crow 数据库(Crow databases)。业务逻辑都将转移到这些代理中,而这些代理将是多仓库的 Crow,所以它们不会区分后端是什么,它们将更新多个数据库,所有的逻辑都将在 AI 层。一旦 AI 层成为所有逻辑所在的地方,人们就会开始替换后端。我们正在看到,实际上,我们在 Dynamics 后端赢得了相当高的份额,这要归功于代理的使用。我们将非常积极地尝试整合所有这些,无论是在客户服务领域,还是在另一个令人着迷的增长点不仅仅是 CRM,还有我们所说的财务和运营,因为人们想要更多 AI 原生的业务应用程序。这意味着业务应用程序的逻辑层可以由 AI 和 AI 代理编排。换句话说,Copilot 到代理再到我的业务应用程序应该是无缝衔接的。同样,你甚至可以说,为什么我需要 Excel?有趣的是,对我来说最令人兴奋的事情之一是带有 Python 的 Excel,就像带有 Copilot 的 GitHub。我们所做的是,当你拥有这样的 Excel 时,你应该打开 Excel,打开 Copilot,然后开始使用它,因为它就像拥有一个数据分析师。它不再只是理解你拥有的数字,它会为你制定计划。就像 GitHub Copilot 工作区创建计划然后执行计划一样,这就像一个数据分析师,他使用 Excel 作为一种行列可视化工具来进行分析和作为暂存器。所以,Copilot 正在使用 Excel 作为工具,以及它所有的操作空间,因为它能生成内容,并且它有一个 Python 解释器。实际上,这是重新概念化 Excel 的一个很好的方式。你可以说,我将生成整个 Excel,毕竟有一个代码解释器,因此你可以生成任何东西。所以,是的,我认为将会出现颠覆。但我们处理 M365 的方式是,首先将 Copilot 构建为 AI 的组织层用户界面,获取所有代理,包括我们自己的代理。可以将 Excel 视为 Copilot 的一个代理,Word 是一个代理,它们是某种专门的画布。例如,我正在处理一份法律文件,我把它放到 Pages 中,然后放到 Word 中,然后让 Copilot 继续处理。进入 Excel,让 Copilot 继续处理。这是一种关于工作和工作流程的新思维方式。

AI 与企业运营效率:精益思想的启示

Bill Gurley: 我经常听到人们担忧的一个问题是他们在这些投资上的投资回报率(ROI)。你们有超过 22.5 万名员工,你们是否正在利用 AI 来提高生产力、降低成本、推动自身业务的收入增长?如果是的话,最大的例子是什么?更具体一点,当我们采访 Jensen(黄仁勋)时,我问他,当他的营收增长 2 到 3 倍时,他预计员工人数会增加多少?他说 25%。当我问为什么时,他说,“因为我们有 10 万个代理在帮助我们工作。”所以,当你们的 Azure 营收增长 2 到 3 倍时,你预计员工人数也会出现类似的增长吗?

Satya Nadella: 这对我们和客户来说都是最重要的问题。我是这样看待这个问题的:我一直在学习精益生产在工业企业中应用的经验。这很令人着迷,它们的增长都超过了 GDP 增速,这令人难以置信。它们在如何提高价值、减少浪费方面的纪律性,好的工业企业可以说,仅仅通过精益生产就能增加两到三个百分点的推动力。所以,我认为 AI 就是知识型工作的精益生产。我们正在认真学习它,例如,我们如何真正去审视这就是为什么我认为,我们在 90 年代有过业务流程再造(business process re-engineering),我认为它以一种新的方式回来了,那些能够端到端思考流程的人会说,“思考流程效率的方法是什么?什么可以自动化?什么可以变得更高效?”客户服务是一个明显的例子,我们正在进行中,我们花费了大约 40 亿美元,这包括从 Xbox 支持到 Azure 支持的所有内容。这真的很重要,因为前端的自助解决率提高了。然后最大的好处是代理的效率,代理更快乐,客户更满意,我们的成本也在下降。所以,我认为这是最明显的,而且我们的联络中心应用也做得非常好。另一个显然是 GitHub Copilot,以及 GitHub Copilot 工作区。这是第一个体现代理化的地方,你可以从一个问题到一个规范,再到一个计划,然后进行多文件编辑。所以,它完全改变了团队的工作流程。正如我所说,M365 是一个总括。M365 Copilot,举个例子,即使是我自己,每次我要见客户时,CEO 办公室的准备工作流程自 1990 年以来就没有改变过。我观察到的其中一种方式是,想象一下预测是如何进行的,准备、开会、会后跟进,以前是传真,然后是内部备忘录,然后出现了电子表格,人们说,“我只需要把一个 Excel 电子表格放在电子邮件里发出去,人们就会输入数字,我们就会有一个预测。”同样的事情正在 AI 时代发生。现在,我为客户会议做准备时,我只需要进入 Copilot,然后说,“告诉我所有关于这个客户的信息。”它会告诉我所有信息,从我的 CRM、我的电子邮件、我的 Teams 会议和网络,它会进行归纳,我把它放到 Pages 中,与我的客户团队实时共享。所以,想象一下,整个层级,“哦,让我为 CEO 准备一份简报”这种事情消失了,只需要一个查询。我生成一个查询,共享一个页面,如果他们想注释,他们可以注释。所以,我在与 AI 进行推理,并与我的同事进行协作,这就是新的工作流程,这正在各地发生。有人给我举了一个供应链的例子,有人说供应链就像一个交易台,只是它没有实时信息。它就像你等到季度结束,然后首席财务官(CFO)会来批评你,告诉你犯了哪些错误。如果财务分析师可以实时为你提供信息,并告诉你,“你正在这个地区的数据中心签订这份合同,你应该考虑这些条款。”所有这些实时智能正在改变工作流程和工作产出。所以,有很多很多的用例。回到你的基本观点,我们的目标是通过 AI 创造运营杠杆。所以,我认为员工人数实际上会我观察到的一种方式是,我们的总人力成本会下降,我们的人均成本会上升,我们每个研究员的 GPU 成本也会上升。

资本支出、规模化法则与 AI 的经济学

Bill Gurley:  让我们把话题转到你之前提到的模型规模化和资本支出。我听你说过微软的资本支出,我想在 2014 年你接任时,你根本无法想象资本支出会达到今天的水平。实际上,你说过,这些公司看起来越来越像工业公司的资本支出,而不是传统的软件公司。你们的资本支出从 2020 年的约 200 亿美元增长到 2025 年可能高达 700 亿美元。你们在这方面的资本支出上获得了相当稳定的回报,实际上,当你观察你们的资本支出与收入时,它们之间存在着非常高的相关性。有些人担心这种相关性会破裂,甚至你自己也说过,也许在某个时候,资本支出将不得不先于收入,可能会有一个空档期,我们必须为此做好准备。你如何看待资本支出的水平?它是否让你夜不能寐?以及这种增长速度何时开始放缓?

Satya Nadella:  有几点。首先,这是作为超大规模云服务商的优势所在,因为从某种意义上说,我们已经实践了很长时间。数据中心的生命周期是 20 年,电力按需付费,设备是 6 年,你知道如何提高利用率。好消息是,它既是资本密集型的,也是软件密集型的,你可以使用软件来提高资本的回报率。就像人们甚至在早期说,“超大规模云服务商怎么能赚钱呢?因为旧的主机托管商和新的超大规模云服务商之间的区别在于软件。”我认为这也将适用于 GPU 物理学,你购买领先的产品,进行部署。实际上,现在正在发生的一件事,我称之为“追赶”。毕竟,我们在过去 15 年里构建了云,突然之间,云中出现了一个新的计量单位,叫做 AI 加速器,因为现在每个应用都需要一个数据库、一个 Kubernetes 集群和一个在 AI 加速器上运行的模型。所以,如果你说,“哦,我需要所有这三个。”你突然之间必须构建这些 AI 加速器,以便能够为所有这些应用程序提供服务。这将趋于正常化。所以,首先是建设将会完成,工作负载将趋于正常化,然后它将像云一样持续增长。这是其中一方面。这就是避免一些逆向选择问题的方法,确保不仅仅是所有供给侧,每个人都在建设,只希望需求会到来,而是确保在世界各地、各个领域都有真正的多样化需求,我会关注所有这些。所以,我认为这是管理投资回报率的方式。顺便说一句,利润率将是不同的。这回到了我们最初的对话,当我思考微软云时,原始 GPU 的利润率与架构加 GPU 或 Foundry 加 GPU 的利润率,或者应用,比如聊天,或者 GitHub Copilot,以及 M365 的附加组件,它们的利润率都是不同的。所以,拥有一个产品组合很重要。因为如果我看微软,为什么微软今天在云领域有溢价?我们比亚马逊大,增长速度比亚马逊快,利润率比亚马逊高,因为我们拥有所有这些层级。这也是我们在 AI 时代想要延续的策略。

Bill Gurley: 关于模型规模化已经有很多讨论,历史上也有关于将集群规模扩大 10 倍的讨论,你可能会一次又一次地这样做,而不是一次,然后两次。一些业内人士仍然认为应该朝这个方向发展。最近有一个播客,他们提出了一个截然相反的观点,他们说,“如果我们不再这样做了,那就更好了,因为我们可以直接转向推理,推理的成本正在下降,而且你不需要花费所有这些资本支出。”我很好奇,这是对同一枚硬币的两种不同看法,但你对大型语言模型(LLM)的规模化和训练成本,以及我们未来的发展方向有什么看法?

Satya Nadella: 我坚信规模化法则。这是我首先要说的,实际上,如果说我们在 2019 年押注了什么,那就是规模化法则,我仍然坚持这一点。换句话说,不要与规模化法则作对。但与此同时,让我们也基于一些不同的事情来考虑。首先,规模化法则的指数级增长将变得更加困难,因为随着集群变得更大,一切进行大规模训练的分布式计算问题变得更加困难。这是其中一方面。但我仍然要说,我会让 OpenAI 的人来说明他们在做什么,但他们正在继续进行预训练,我认为预训练还没有结束,它还在继续。但令人兴奋的事情,OpenAI 也公开谈论过,Sam 也谈论过,是他们用 o1 所做的事情。带有自动分级的思维链(Chain of Thought)非常棒。实际上,这是测试时计算或推理时计算,作为另一种规模化法则。你有预训练,然后你有有效的测试时采样,然后创建可以返回到预训练的 token,创建更强大的模型,然后在你的推理中运行。因此,这是提高模型能力的一种极好的方法。测试时或推理时计算的好处是,有时运行这些 o1 模型意味着,采样有点像训练,当你使用它来为你的预训练生成 token 时。但当客户使用 o1 时,他们也在使用你的更多计量单位,所以你正在获得报酬。因此,这里有更多的经济模型。这就是为什么我说我在全球拥有 60 多个数据中心,这是一个很好的结构性地位,对于其中一种规模化,也就是预训练和另一种规模化,也就是推理,它们的硬件架构是不同的。

Bill Gurley: 而且我认为最好的思考方式是,这是一个比率。回到 Brad 关于投资回报率的问题,这是我认为你必须建立一个稳定状态的地方。实际上,每当我与 Jensen 交谈时,我认为他是对的,他说,“你每年都想买一些,而不是买”想想看,当你对某样东西进行 6 年折旧时,最好的办法是我们一直采用的,你每年都买一点,然后你让它老化,你让它老化,你让它老化。你使用领先的节点进行训练,然后第二年它进入推理。我认为这是我们将进入的稳定状态,对于整个产品组合,无论是利用率还是投资回报率,然后需求满足供应。基本上,回到你关于每个人都说“哦,指数增长停止了吗”的观点,另一件事是经济现实也会起到一定的制约作用。在某个时候,每个人都会思考,什么是经济上理性的做法?

Bill Gurley: 同意。即使我每年都能将产能翻倍,我也无法消化掉这些新增的产能,另一个问题是“赢者诅咒”的经济学原理。其他人只需要看看你的能力,然后进行蒸馏,这是不可能的,这有点像盗版。你可以制定各种各样的使用条款,但不可能控制蒸馏。这是第二件事。第三件事是,你甚至不需要做任何事情,你只需要对该能力进行逆向工程,然后以一种更节省计算资源的方式来实现它。所以,鉴于所有这些,我认为人们会在多大程度上进行追逐,这将受到限制。现在,每个人都想成为第一,这很好,但在某个时候,所有的经济现实都会在每个人身上发挥作用。网络效应存在于应用层,所以为什么我要在一些模型能力上花费大量资金,而网络效应却都在应用上呢?

关于 10x 集群、o1 模型和预训练的争论

Brad Gerstner: 我听到你说,我相信你埃隆说过他要建立一个拥有 100 万个 GPU 的集群,我认为 Meta 也说过同样的话。

Bill Gurley: 我认为他说了 20 万,然后他开玩笑说要 100 万。

Brad Gerstner: 我认为他开玩笑说要 10 亿。但事实是,基于你所看到的关于预训练和规模化的情况,你是否改变了你们的基础设施计划?然后我还有一个关于 o1 的单独问题。

Bill Gurley: 可以说,类似于 10 倍的观点,我们可以争论持续时间,是每两年,还是每三年,每四年,这里有一个经济模型,这是我认为需要一种有纪律的方式来思考如何清空你的库存,使其有意义的地方。或者另一种方式是你的设备的折旧周期。你不可能除非你发现 GPU 的物理特性发生了变化,突然之间它流经我的损益表,而且实际上它的利润率与超大规模云服务商相同或更高,否则你不可能预先购买。就这么简单。所以,这就是我要做的,我将继续建设,基本上是为了如何推动推理需求,然后不断提高我的能力,并提高效率。Sam 可能有不同的目标,他对此持开放态度。他可能会说,“我想构建,因为我知道我对通用人工智能(AGI)的样子或诸如此类的东西有深刻的信念。”那就这样吧。因此,我认为我们之间存在一些分歧。

Brad Gerstner:  我想澄清一下,我在一个播客上听到 Mustafa 说,微软不会参与最大的模型训练竞赛,这是公平的说法吗?

Satya Nadella:  我们不会做的是做两次。因为毕竟我们拥有它的知识产权,对于今天的微软来说,鉴于与 OpenAI 的合作关系,进行两次重复的训练是毫无意义的。这就是为什么我们有这是我们一直以来的战略纪律。这就是为什么,我总是向 Sam 强调,我们把赌注押在了 OpenAI 身上,我们说,“我们将集中我们的计算资源。”我们这样做是因为我们拥有知识产权的所有权利。这就是它的付出和回报,我们对此感觉非常好。所以,Mustafa 基本上是说,“我们也会做”实际上,我们这边的很多重点是训练后,甚至是在验证或诸如此类的事情上。这是一件大事,所以我们将把大量的计算资源集中在添加更多有意义的模型适配和能力上,同时也有原则性的预训练工作,这让我们内部有能力做一些事情。无论如何,我们针对不同的用例拥有不同的模型权重和模型类别,我们将继续开发这些模型。

关于 CoreWeave、供应链和电力约束

Bill Gurley:  你对 Brad 关于平衡 GPU 投资回报率的问题的回答,是否解释了为什么你们将一些基础设施外包给 CoreWeave,以及你们之间的合作关系?

Satya Nadella:  我们这样做是因为我们都被一个叫做 ChatGPT 的热门产品搞得措手不及,而且 OpenAI我们完全始料未及。这不可能,我不可能在 2022 年做出任何供应链计划。我们都不知道会发生什么,2022 年 11 月发生的事情就像晴天霹雳。因此,我们必须追赶,所以我们说,“我们当时顾不上考虑效率问题。”这就是为什么,无论是 CoreWeave 还是其他许多公司,我们到处购买。这是一次性的事情,现在一切都在追赶。所以这更多的是为了赶上需求。

Bill Gurley: 你们仍然受到供应限制吗,Satya?

Satya Nadella:  我们受到电力的限制,我们没有受到芯片供应的限制。我们在 2024 年肯定受到了限制,我们已经告诉了华尔街,这就是为什么我们对 2025 年上半年,也就是我们本财年的剩余时间持乐观态度。在那之后,我认为我们在进入 2026 年及以后将处于更好的状态,我们有很好的可见性。

o1 模型、推理需求与微软的长期规划

Brad Gerstner: 我听说,关于二级思考,你们在 o1 上所做的测试时计算和后训练工作正在产生非常积极的结果。当你思考这个问题时,这也是非常计算密集型的,因为你正在生成大量的 token,你将这些 token 回收到上下文中,你一次又一次地这样做,所以这会迅速增加。Jensen 说他认为,看看 o1,推理需求将增加一百万倍或十亿倍,只是推理需求将因此大幅增加。你觉得你们有正确的长期计划来扩展推理以跟上这些新模型吗?

Satya Nadella: 我认为有两件事,Brad。在某种程度上,考虑完整的工作负载是非常有帮助的。在代理时代,完整的工作负载你必须拥有加速器,实际上,OpenAI 增长最快的事情之一是容器服务,因为毕竟这些代理需要一个临时存储空间来进行一些自动分级,甚至生成样本。这就是他们运行代码解释器的地方,顺便说一句,这是一个普通的 Azure Kubernetes 集群。所以,有趣的是,甚至普通 Azure 计算与其相关的 GPU 之间也存在一个比率,然后还有一些数据服务。所以,回到你的观点,当我们说“推理”时,这就是为什么我看待它并说,“人们认为 AI 与云是分开的,AI 现在是云的核心部分。”而且我认为,在一个每个 AI 应用程序都是有状态应用程序、都是代理应用程序的世界里,代理执行操作,那么经典的应用服务器加上 AI 应用服务器加上数据库都是必需的。所以,我回到我的基本观点,我们建立了这 60 多个 AI 区域,我的意思是 Azure 区域,它们都将为全面的 AI 应用程序做好准备,我认为这将是需要的。

微软与 OpenAI:合作、竞争与商业利益

Brad Gerstner: 这很有道理。让我们稍微谈谈我们在这段对话中已经多次谈到了 OpenAI,但你正在管理那里的巨额投资与你们自己在 Ignition 的努力之间的平衡。你展示了一张幻灯片,突出了 Azure OpenAI 和 OpenAI Enterprise 之间的区别,其中很多是关于你们提供的企业级功能。所以,当你看到这种张力,你与 OpenAI 的竞争时,你是否认为他们,比如 ChatGPT,将成为消费者端的赢家,你们也将拥有自己的消费者应用,然后在企业领域,你们将分而治之?你是如何看待与他们的竞争的?

Satya Nadella:  鉴于 OpenAI 是一家规模非常大的公司,它是一家非常成功的公司,甚至拥有多条业务线和细分市场等等,我是这样看待这个问题的:我非常原则性地看待它,就像我对待任何其他大合作伙伴一样。我把他们看作,作为投资者,他们的利益和我们的利益是什么,我们如何使它们保持一致?我将他们视为知识产权合作伙伴,因为我们向他们提供底层系统架构方面的知识产权,他们向我们提供模型层面的知识产权。这是另一面,我们对彼此的成功都非常感兴趣。第三,我把他们看作一个大客户,所以我想像服务任何其他大客户一样服务他们。最后是竞合关系,无论是在消费者领域的 Copilot,还是在 M365 或其他任何领域的 Copilot,我们都会说,“竞合在哪里?”这就是我看待它的方式,最终这些事情会有一些重叠,但在这种情况下,他们拥有苹果的交易,在某种程度上对微软的股东来说是有利的。即使在你提到的 API 差异,客户可以选择哪个 API 前端。有一些差异,Azure 有一种特定的风格,如果你是一个 Azure 客户,并且你想使用 Azure 的其他服务,那么使用 Azure 和 Azure 市场是最简单的。但如果你在 AWS 上,并且只想以无状态的方式使用 API,很好,甚至可以使用 OpenAI。所以,有时候拥有这两种类型的分发渠道对微软的成本也是有帮助的。

关于 OpenAI 关系的讨论

Bill Gurley: 我想说,硅谷社区,甚至更大的商业社区,都对微软和 OpenAI 之间的关系非常着迷。我上周参加了 DealBook 大会,Andrew Ross Sorkin 对 Sam 进行了很多追问。我想有很多事情你不能说,但你有什么可以说的吗?据说正在进行重组,转换为盈利性公司,我想埃隆也对此发表了一些看法,你能告诉我们些什么?

Satya Nadella: 我认为这些,Bill,显然都是由 OpenAI 的董事会、Sam、Sarah、Brad 和那个团队来决定他们想做什么,我们希望提供支持。我想说的一件事是,我们非常关心 OpenAI 的持续成功,这符合我们的利益。而且我也认为,这是一家在这个平台转型时代具有标志性意义的公司,OpenAI 发展得好,世界会变得更好。所以,这是我们的基本立场。在那之后,正如你所说,这种张力的节奏来自于,在所有这些合作伙伴关系中,一些是竞合的张力,一些是Sam 是一个了不起的企业家,他有远见和抱负,以及他想要前进的速度。因此,我们必须平衡所有这些,他想做的事情,我必须适应,这样他才能做他想做的事情,他也需要适应我们需要纪律,因为我们可能有整体的限制。所以,我认为我们会解决这个问题。但我认为好消息是,在这种结构中,我们已经走了很长一段路。这 5 年对他们来说很棒,对我们来说也很棒,至少对我来说,我想尽可能地延长它。拥有一个长期稳定的合作伙伴关系只会对我们有利。

Brad Gerstner: 当你思考单独的融资,以及将这两家公司的资本结构分离时,你们是否有动力相对快速地这样做?我曾说过,我认为他们的下一步,让他们成为一家上市公司会很好,这是一家如此具有标志性的公司,是 AI 领域的早期领导者。这是你看到的这些人的前进道路吗?还是你认为它会保持我们今天的关系?

Satya Nadella: 在这一点上,Brad,我想小心一点,不要越界。因为我们不在董事会,我们是像你一样的投资者。最终,这是他们的董事会和他们的管理层做出的决定。所以,我会接受他们的任何暗示。换句话说,我非常清楚,我想支持他们做出的任何决定。对我来说,也许甚至作为一名投资者,商业和知识产权合作伙伴关系才是最重要的。我们希望确保我们在这个过程中保护我们的利益。如果有什么对他们未来的发展有好处,但我认为,在这一点上,像 Sarah、Brad 和 Sam 这样的人在这个问题上非常聪明,什么对他们实现使命目标最有意义,我们就会支持什么。

开源与闭源之争,以及 AI 安全的探讨

Brad Gerstner: 也许我们应该结束了,感谢你今天抽出这么多时间。但我想以这个关于开放与封闭的话题来结束,以及我们应该如何合作来引入安全的 AI。所以,也许我会把这个问题留给你,请你谈谈你如何看待其中一些差异和争论,以及这样做的重要性。我想提一个简单的例子,有报道称,中国研究人员利用 Meta 的 Llama 开源模型,开发出可能用于军事用途的 AI 模型。像 Bill 和我这样的开源支持者有很多,但我们也听到了批评的声音。你说每个人都可以蒸馏出一个模型,所以我们将看到其中一些被用于我们不愿意看到的用途。所以,你如何看待我们作为一个国家和一个公司集体走到一起,真正引入安全的 AI?

Satya Nadella: 我认为有两件事。我一直认为开源和闭源是创造网络效应的两种不同策略,我从来没有把它们看作是宗教战争。我更多地把它们看作是两种不同的这就是为什么我认为 Meta 和 Mark 正在做的事情非常聪明。他甚至在试图将他的互补品商品化,如果我是他,我也会这样做,这对我来说很有意义。让整个世界融合在一起,我认为他公开且非常雄辩地谈到了他想成为 LLM 领域的 Linux,我认为这是一个非常好的模式。实际上,我认为甚至有一个模式,有时候回到你的一些经济学问题,我认为从博弈论的角度来看,一个联盟可能比任何一个参与者单独行动要好得多。与 Linux 基金会不同的是,Linux 基金会的贡献主要是运营支出(Opex)的贡献。我总是说,如果没有我想,实际上,微软是 Linux 最大的贡献者之一,IBM、Oracle 等等也是如此。我认为开放和开源可能是实现这一目标的一个非常好的机制,当多个实体走到一起等等,这是一个明智的商业策略。然后闭源可能在某些情况下有意义,毕竟我们有很多闭源产品。然后安全是一个重要的但正交的问题,因为毕竟法规将同时适用于两边。你可以争辩说,如果每个人都在检查它,那么一边会更安全,或者另一边会更安全。所以,我认为这些最好在资本主义制度下处理,至少有多种模式更好,让它们竞争,不同的公司会选择不同的道路。然后我们应该非常强硬,政府也会要求。我认为在科技领域,现在不可能说,“以后再考虑意想不到的后果”。没有哪个政府、哪个社区、哪个社会会容忍这一点。因此,世界各地的这些 AI 安全机构将保持相同的标准。还有国家安全,回到你的观点,如果存在国家安全泄露的挑战,人们也会担心这一点。因此,我认为国家和国家政策将在很大程度上决定这些模式以及监管制度的样子。

结语:AI 时代的微软与未来展望

Brad Gerstner: 很难相信我们才刚刚进入后 ChatGPT 时代 22 个月。但你你知道,有趣的是,当我回顾你关于阶段性转变的框架时,你必须把微软放在一个非常好的位置,因为我们正在进入 AI 时代。所以,祝贺你们在过去 10 年里的表现,这真的非常令人瞩目。但我认为,当看到你、埃隆、马克、桑达尔等领导者在 AI 领域为美国引领发展时,我和 Bill 都感到非常兴奋。我想我们都对我们相对于世界其他地方的定位感到非常乐观。感谢你抽出时间与我们交流。

Satya Nadella:  我非常感谢你们的时间,非常感谢,谢谢 Brad,谢谢 Bill,保重。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值