我现在有六种方法实现无人机的T265定点

我现在有六种方法实现无人机的T265定点,当然他们的本质应该是通的。这下面的代码我在Github上都fork了。

vision_to_mavros功能包

Auterion 的VIO功能包

阿木的px4_command

阿木的普罗米修斯

XTDrone

GAAS

前两个的介绍可以看

T265定点所使用到的功能包vision_to_mavros(APM官方手册给的)和VIO(PX4官方手册给的)_TYINY的博客-CSDN博客

这篇博文也看看,现在可能能真正自己写个T265定点了,有的就做个消息类型转换。

昨天本身对消息也有了进一步认识。

就像肖昆自己写个transfer.py确实不难。
 

*把T265定点过程中的坐标变换彻底弄清楚(包含vision_to_mavros代码分析)px4_command T265定点过程的坐标系转换也理清_TYINY的博客-CSDN博客

2021.11.5

我现在有七种方法实现,自己写了个t265_to_mavros

使用模糊控制方法实现无人机的任务分配可以分为以下几个步骤: 1. 定义模糊控制系统的输入和输出 首先需要确定模糊控制系统的输入和输出变量,以及它们的取值范围。对于无人机的任务分配,输入变量可以是任务的紧急程度、任务的重要程度、任务的位置等等;输出变量可以是各个无人机执行任务的权重值。 2. 设计模糊控制器的控制规则 设计控制规则是模糊控制器设计的核心。根据任务紧急程度、任务重要程度和任务位置等输入变量,可以设计一些模糊规则,如“如果任务紧急且任务重要,则无人机权重高”等等。 3. 设计模糊控制器的模糊化和解模糊化方法 模糊控制器的输入变量通常需要进行模糊化,即将具体的输入值映射到模糊集合中的隶属度。同时,模糊控制器的输出变量需要进行解模糊化,即将模糊的输出值转化为具体的控制量。常用的方法包括最大隶属度法、加权平均法等。 4. 选取模糊控制器的推理机制 模糊控制器的推理机制决定了如何根据输入变量和控制规则计算输出变量。常用的推理机制包括最小最大法、最大最大法等。 5. 验证和调整模糊控制器 最后需要对设计好的模糊控制器进行验证和调整。可以通过仿真或实验来验证模糊控制器的性能,根据实验结果对控制规则进行调整,以达到更好的控制效果。 以上就是使用模糊控制方法实现无人机任务分配的一般步骤,具体的实现过程需要根据具体情况进行具体分析和设计。在MATLAB中实现模糊控制器,可以使用Fuzzy Logic Toolbox工具箱。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值