黄皓炫,盛 武† (安徽理工大学 经济与管理学院, 安徽 淮南 232000)
摘 要:为了预测商品描述文案中商品特征对点击的影响,量化分析用户的消费行为特征及缓解冷启动问题,建立 了一种基于 LDA 模型和文本情感分析的点击预测模型。该模型基于 LDA 主题模型对商品描述词的分类筛选,对构 成词进行情感分析,构建特征向量以表示用户对商品各特征的情感倾向,并通过 LightGBM 算法进行对点击的预测。 模型可以将非结构化文本数据转换为结构化数据,量化用户对商品不同特征的兴趣倾向,并利用不同商品的相似特 征缓解冷启动问题。实验结果表明模型有效提高了点击预测效果并能缓解冷启动问题。 关键词:LightGBM;点击预测;文本情感分析;LDA 主题模型;冷启动;