大模型ChatGLM Lora微调的参数详探- 多卡版本

多显卡训练深度学习,nvidia-smi中有一个volatile gpu util,现在batch size很小,显存很充足,volatile gpu util已经能达到很充足很高的利用率。现在有必要加大batch size的数量吗? 为什么加大batch size之后xxit/s这个数值反而变小了,你知道这个数值是什么意思嘛?是不是每条数据/s的意思?

在深度学习训练中,batch size的设置是一个很重要的超参数。以下是对于你问题的一些回答:

  1. 首先,volatile gpu util表示的是GPU的计算资源利用率,而不是显存利用率。它越高,代表GPU的计算能力被更好地利用了。在你的情况下,这个指标已经很高,说明你的GPU计算能力已经被很好地利用。

  2. 那么是否还需要增大batch size呢?这并不是一个简单的问题,因为batch size的大小会影响模型的学习效果。如果你的模型已经能够达到你期望的精度,那么没有必要增大batch size。但是,如果你想要尝试提高模型的精度,可能需要试验不同的batch size。

  3. 你提到xxit/s这个数值反而变小了,这个数值通常代表每秒处理的迭代次数或者说批次数。增大batch size后,因为每一次迭代需要处理更多的数据,所以迭代速度可能会变慢,导致

<think>好的,我现在需要回答用户关于ChatGLM3-6B模型进行LoRA微调时的显要求和性能推荐的问题。首先,我应该回顾用户提供的引用内容,看看有没有相关的信息。 根据引用[1]和[2],里面提到了不同微调方法的显存占用情况。其中LORA微调需要1张显,显存占用14082MiB。这应该是针对ChatGLM2-6B模型的,但用户现在问的是ChatGLM3-6B。不过通常模型版本升级可能在显存需求上不会有太大变化,所以可以推测ChatGLM3-6B的LoRA微调显存需求相近,大约14GB左右。因此,用户需要一张显存至少16GB的显,比如RTX 3090 24GB或RTX 4090 24GB,这样会有足够的余量。 另外,引用[3]提到ChatGLM2-6B通过量化技术可以在消费级显上部署,可能LoRA微调时如果使用量化,显存需求会更低。但用户的问题是关于ChatGLM3-6B,可能需要确认是否支持量化微调,如果有的话,像RTX 3060 12GB这样的显可能也够用,但需要结合实际情况。 用户还提到显存优化方法,比如梯度检查点和混合精度训练,这些可以在引用中找到相关信息吗?引用中没有直接提到,但这是常见的优化技术,可以推荐。此外,并行方面,引用[2]提到SFT全量微调用了4张,但LoRA只需要1张,所以用户可能不需要,但如果有更大的模型数据,可能需要考虑。 总结一下,用户需要知道进行LoRA微调时的显存需求,以及推荐的显型号。根据引用内容,显存占用约14GB,推荐16GB以上的显,比如3090或4090。如果使用量化技术,可能可以降低到12GB,但需要确认模型是否支持。此外,优化方法如梯度检查点、混合精度训练也是需要考虑的。</think>### ChatGLM3-6B 模型 LoRA 微调要求及性能推荐 #### 1. **显存需求分析** 根据引用数据ChatGLM2-6B 的 LoRA 微调显存占用为 $14082$ MiB(约 $14$ GB)[^1][^2]。ChatGLM3-6B 作为升级版本参数量相近,预计显存需求类似。 - **基础要求**:单显存至少 $16$ GB,推荐 $24$ GB 显以留出优化和数据处理空间。 - **量化优化**:若使用 8-bit/4-bit 量化技术,显存需求可降至 $8$-$12$ GB[^3]。 #### 2. **显型号推荐** | 显型号 | 显存容量 | 适用场景 | |------------------|----------|-----------------------------| | NVIDIA RTX 3090 | 24 GB | 标准配置,支持全量参数微调 | | NVIDIA RTX 4090 | 24 GB | 高性能场景,训练速度更快 | | NVIDIA RTX 3060 | 12 GB | 需结合量化技术使用 | #### 3. **性能优化建议** - **混合精度训练**:通过 `FP16` 或 `BF16` 降低显存占用,提升计算效率。 - **梯度检查点(Gradient Checkpointing)**:以时间换空间,减少显存消耗约 $20\%$。 - **批处理大小调整**:根据显存容量动态设置 `batch_size`(通常为 $4$-$8$)。 #### 4. **环境配置示例** ```python # 使用 Hugging Face 的 PEFT 库加载 LoRA 配置 from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=8, # LoRAlora_alpha=32, target_modules=["query_key_value"], lora_dropout=0.1, bias="none" ) model = get_peft_model(model, lora_config) ``` #### 5. **扩展(可选)** 若需加速训练,可通过 `DeepSpeed` 或 `Accelerate` 实现并行,但 LoRA 微调通常单即可完成。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值