WWW 2024 | GraphTranslator: 将图模型对齐大语言模型

WWW 2024 | GraphTranslator: 将图模型对齐大语言模型

原创 莫燕虎, 孙铭蔚 北邮 GAMMA Lab 2024-03-25 20:18 北京

论文链接:https://arxiv.org/pdf/2402.07197.pdf

代码链接:https://github.com/alibaba/GraphTranslator

引言

图模型(GM)如图神经网络(GNN),利用节点特征和图结构来学习表征并预测,在多种领域表现出色,但GM通常局限于预定义任务如节点分类,难以适应新的类别和任务。而大型语言模型(LLM)如ChatGPT,在处理开放式任务和理解自然语言指令方面显示了巨大潜力,推动了跨模态研究的发展。最近,将LLM应用于图的工作可分为两类,如下图(a)-1和(a)-2所示:(1)利用LLM

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值