大模型参数量都是7B,13B和65B等背后的原因是什么?

本文探讨了大模型参数量如7B、13B和65B背后的原因,涉及历史沿革、适配推理设备、模型结构设计以及性能与成本的综合考虑。作者分析了LLM模型的参数选择及其对GPU资源的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大模型参数量都是7B,13B和65B等背后的原因是什么?

原创 ully AI工程化 2024-04-15 18:40

不知道大家有没有注意到现在大模型百花齐放,但是模型参数大小却非常一致,基本都是7B,13B,65B等。那么,为什么被设计成这么大呢?

网络上有很多解释,笔者结合自己的理解,分享其中可能的原因。

最直接的就是历史传承,因为最初OpenAI在gpt-3就是这么干的,然后,Meta借鉴了OpenAI的做法,推出了llama的7B,13B,33B,65B四个尺寸。由于llama在开源领域的地位,其他模型厂商都基本遵守了这样的约定,形成了当下的局面。

适配推理设备。特别是对于一些参数量小的模型是为了适配不同级别的GPU显存,常见的显寸大小从4G到80G不等,我们知道显存占用的公式:

模型空间大小 = 参数量 *参数精度

ully,公众号:AI工程化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值