MoLoRA(Mixture of Low-Rank Adaptation)是一种参数高效的微调技术,旨在优化大型语言模型,特别是在计算资源有限的情况下。它结合了混合专家(MoE)和低秩适应(LoRA)的概念,以提高模型性能,同时保持较低的计算成本。
MoLoRA的关键特点
- 混合方法:MoLoRA结合了MoE和LoRA的优点。MoE允许模型为不同输入使用不同的参数子集(专家),而LoRA通过低秩更新减少了需要训练的参数数量。
- 参数效率:通过结合MoE和LoRA,MoLoRA实现了高参数效率。它显著减少了微调所需的额外参数数量,使其适用于计算资源有限的任务。
- 灵活性和可扩展性:该技术使用T5X、Flaxformer、Flax和Jax等先进的深度学习框架实现,支持在TPU上