结合混合专业与Lora,MoLora微调技术 MoV(混合变体)

MoLoRA(Mixture of Low-Rank Adaptation)是一种参数高效的微调技术,旨在优化大型语言模型,特别是在计算资源有限的情况下。它结合了混合专家(MoE)和低秩适应(LoRA)的概念,以提高模型性能,同时保持较低的计算成本。

MoLoRA的关键特点

  1. 混合方法:MoLoRA结合了MoE和LoRA的优点。MoE允许模型为不同输入使用不同的参数子集(专家),而LoRA通过低秩更新减少了需要训练的参数数量
  2. 参数效率:通过结合MoE和LoRA,MoLoRA实现了高参数效率。它显著减少了微调所需的额外参数数量,使其适用于计算资源有限的任务。
  3. 灵活性和可扩展性:该技术使用T5X、Flaxformer、Flax和Jax等先进的深度学习框架实现,支持在TPU上
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值