NeurIPS‘24|即将出分!审稿人发话:高分文章,大多具备以下特点...

NeurIPS'24|即将出分!审稿人发话:高分文章,大多具备以下特点...

原创 图灵学术 图灵学术计算机SCI论文辅导 2024年07月30日 18:37 四川

 NIPS往年评分参考

图片

号外号外!今年NIPS2024的评分即将出炉📊啦!

小图特意统计了往年的NIPS数据,帮你剖析NIPS会议的评分套路💡,希望大家都能中标,论文成功被收录!

根据我们对往年数据的深度剖析📉,一些关键词和热门研究领域往往更容易获得高评分✨。所以,想要中标的小伙伴们,不妨参考一下往年的评分趋势,调整一下自己的研究方向和论文重点,说不定会有意想不到的惊喜哦🎉!

图片

从数据中可以看出,均分在6左右的论文基本上都能被接收📈。这也就是说,如果你的论文评分达到了6,你可以松一口气了,收录的概率非常大😌。

而如果你的评分达到了6.6以上,那么恭喜你🎉,你可以冲击Spotlight甚至是Oral展示了✨!(这样的成绩可是能让你在大会上大放异彩的哦🌟。)

往年NIPS数据统计

图片

投稿量变动趋势:

从2014年的1,678篇投稿到2023年的12,343篇,可以看到NeurIPS会议的投稿量在10年间增长了7倍多。

说明人工智能和机器学习领域的研究热度持续上升,吸引了越来越多的研究者参与。(

图片

小图在这里不禁要感叹,这增长速度,简直就像是坐火箭一样,一飞冲天!)

中稿量变动趋势:

从2014年的414篇中稿到2023年的3,218篇,(这数字跳跃得比小图的心跳还快

图片

)。

中稿数量的增长几乎与投稿量的增长同步,显示了NeurIPS会议规模的扩大。

图片

中稿率变动趋势:

中稿率在这十年间波动不大,大致维持在20% - 26%之间。

具体来说,从2014年的24.7%到2023年的26.1%,中稿率略有增加,但总体变化不大。中稿率在2020年达到最低点(20.1%),而2021年和2022年有所回升,分别为25.7%和25.6%。

图片

投稿量增加,中稿率却稳如老狗,这评审团队的平衡术,简直可以写进教科书了。)

综合分析

图片

2017年到2018年,投稿量有一个明显的跳跃,从3240篇增加到4856篇,而中稿率略有下降。(难道是因为18年大家突然集体开窍,发现了新的研究灵感?

图片

2020年投稿量继续大幅增加至9454篇,但中稿率降至20.1%,为最低点。这可能与疫情期间的学术活动变化有关。(

图片

2020年的疫情让大家都宅在家里,是不是都把时间花在写论文上啦!)

2021年之后,投稿量和中稿量继续增加,中稿率则回升至25%以上。

ICRA 2024 topic统计

图片

01 Reinforcement Learning (强化学习):

强化学习是机器学习中的一个重要分支,研究如何通过试验和错误的互动来优化决策策略。这个领域在机器人控制、游戏AI等应用中取得了显著进展。

02 Neural Networks (神经网络):

神经网络是机器学习的核心模型之一,模仿大脑神经元的连接方式来处理数据。这个主题包括深度神经网络(Deep Neural Networks),用于图像识别、语音识别等任务。

03 Deep Learning (深度学习):

深度学习是使用多层神经网络来学习复杂模式和表示的技术,近年来在多个领域取得了突破性进展,包括计算机视觉、自然语言处理等。

04 Machine Learning (机器学习):

机器学习是广泛研究如何通过数据学习模型和预测的科学。它涵盖了监督学习、非监督学习和半监督学习等多个子领域。

05 Graph Neural Networks (图神经网络):

图神经网络是处理图结构数据的神经网络模型,广泛应用于社交网络分析、化学分子研究等领域。

06 Transformer:

Transformer模型最初应用于自然语言处理,现在已经扩展到图像处理等多个领域。它通过自注意机制显著提高了模型的性能和训练效率。

08 Generative Model (生成模型):

生成模型通过学习数据分布来生成类似的数据。常见的生成模型包括生成对抗网络(GAN)和变分自编码器(VAE)。

09 Federated Learning (联邦学习):

联邦学习是一种分布式学习方法,允许多个设备协同训练模型而无需共享数据,保护数据隐私。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值