ChatGLM2-6B github页面 介绍

ChatGLM2-6B

介绍

ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:

  1. 更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等
### 部署 ChatGLM3-6B 和 LangChain #### 修改 Web Demo 文件路径配置 为了使本地部署生效,在启动 Gradio 服务前需调整 `web_demo.py` 中的模型加载路径,确保指向已克隆至 `/root/autodl-tmp/chatglm3-6b` 的位置。具体更改如下: ```python tokenizer = AutoTokenizer.from_pretrained("/root/autodl-tmp/chatglm3-6b", trust_remote_code=True) model = AutoModel.from_pretrained("/root/autodl-tmp/chatglm3-6b", trust_remote_code=True).cuda() ``` 此操作使得程序可以从指定目录读取预训练好的 ChatGLM3-6B 模型参数[^3]。 #### 设置学术加速并下载代码库 在 AutoDL 平台上执行以下命令来启用网络优化功能,并获取项目源码: ```bash source /etc/network_turbo cd autodl-tmp git clone https://github.com/THUDM/ChatGLM3.git ``` 这一步骤有助于提高资源下载速度以及后续开发效率[^4]。 #### 安装依赖项与初始化环境 进入刚拉取下来的仓库根目录,按照官方文档指示安装必要的 Python 库和其他依赖组件。通常情况下会有一个名为 `requirements.txt` 或类似的文件列出所需包列表。可以使用 pip 工具完成批量安装工作: ```bash pip install -r requirements.txt ``` 对于集成 LangChain 至现有应用中,则可能还需要额外引入一些特定于该框架的支持模块;建议查阅其官方网站或 GitHub 页面上的说明指南来进行适配性改造。 #### 启动应用程序 当一切准备就绪之后,可以通过运行脚本的方式开启交互界面供用户测试对话能力: ```bash python web_demo.py ``` 此时应该能够在浏览器端访问由 Gradio 提供的服务接口,进而体验基于 ChatGLM3-6B 构建的语言处理系统[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值