我们随机选取每种语言的100万个文档语料来测试和比较不同模型的编码压缩率(以支持100种语言的XLM-R为基值1,图中未示出)。可以看到,Qwen-7B在保证中文、英文、代码高效解码的同时,还对其他多种语言(如th、he、ar、ko、vi、ja、tr、id、 pl、ru、nl、pt、it、de、es、fr 等),使模型在这些语言下具有强大的可扩展性以及较高的训练和推理效率。
模型
模型架构:Qwen-7B 采用与 LLaMA 类似的架构构建。以下是与标准 Transformer 的主要区别:1)使用无限制嵌入untied embedding,2)使用旋转位置嵌入,3)除了注意力中的 QKV 之外没有偏差,