flash attention原理

Flash Attention的核心原理可以总结为:

  1. 动机和目标
    传统的自注意力机制在transformer模型中存在计算和内存效率低下的问题,尤其是对于长序列输入。Flash Attention旨在通过优化数据布局和计算流程,降低注意力计算的内存访问开销,提高计算效率。
  2. 切块(Tiling)策略
    Flash Attention将输入的查询(Query)、键(Key)和值(Value)矩阵切分成多个小块(tile),而不是一次性将整个矩阵加载到GPU内存中。这样可以充分利用GPU的有限内存带宽
  3. 内存层次利用
    Flash Attention将计算过程分散到GPU的不同内存层次(HBM和SRAM)。小的数据块被加载到高带宽的SRAM中进行计
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值