详解DPO过程及其损失的计算

答案

DPO(Direct Preference Optimization)是一种新兴的优化方法,旨在通过直接利用人类偏好数据来优化模型参数,避免了传统强化学习中的复杂奖励模型拟合过程。以下是DPO过程的详细解析及其损失计算方法。

DPO过程概述

DPO的核心思想是通过偏好数据直接调整模型参数,主要步骤如下:

  1. 数据集构建:首先,通过对同一问题的不同回复进行标注,生成“chosen”(选择的)和“rejected”(拒绝的)样本,以反映人类偏好。
  2. 模型训练
    • 使用预训练语言模型进行监督微调。
    • 生成成对响应,并由人类标注偏好。
    • 利用标注好的偏好数据集优化策略模型。
  3. 迭代更新:通过不断的迭代和更新,得到与人类偏好一致的最优策略模型。

DPO损失函数

DPO采用了一种基于二元交叉熵的损失函数,以优化策略模型。其损失函数可以表示为:

LDPO=−(log⁡(σ(β⋅logitschosen))+log⁡(σ(−β⋅logitsrejected)))LDPO​=−(log(σ(β⋅logitschosen​))+log(σ(−β⋅logitsrejected​)))

其中:

  • σσ 是sigmoid函数。
  • ββ 是控制KL散度影响的超参数,用于平衡当前模型参考模型之间的差异

    1

    5

    6

损失计算流程

  1. 生成概率:对于每个问题,使用训练的策略模型和冻结的参考模型分别生成“chosen”和“rejected”标签的概率。
  2. 计算损失:根据生成的概率值计算损失,确保选择的响应优于拒绝的响应,从而最大化人类偏好的匹配度。
  3. 梯度更新:通过反向传播计算损失函数相对于模型参数的梯度,逐步调整参数以提高与人类偏好的吻合度。

数学推导

DPO中的损失函数推导依赖于Bradley-Terry(BT)模型,该模型用于比较多个对象相对实力偏好的理论基础。通过配对比较,BT模型能够有效地建模人类偏好分布。在DPO中,这一过程被简化为直接优化策略,而不需要显式地估计奖励函数

1

4

5

损失函数的具体形式

在实现中,DPO损失函数可能会采用不同形式,例如:

  • Sigmoid损失
     

    python

    losses = ( -F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing) - F.logsigmoid(-self.beta * logits) * self.label_smoothing )

  • Hinge损失
     

    python

    losses = torch.relu(1 - self.beta * logits)

这些不同形式的损失函数可以根据具体需求进行选择,以适应不同的数据特性和训练目标

2

3

4

.

总结

DPO通过直接利用人类偏好数据来优化策略模型,简化了传统强化学习中的复杂过程。其损失函数基于简单而有效的数学原理,不仅提高了训练效率,还确保了模型能够稳定地学习到符合人类偏好的策略。这种方法在自然语言处理等领域展现出良好的应用潜力。

分享

改写

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值