图优化或者位姿图优化和因子图是两个东西,区分清楚

图优化或者位姿图优化和因子图是两个东西,区分清楚,别看着名字都是图,以为是一个东西。

https://blog.csdn.net/sinat_16643223/article/details/119850498

图优化 位姿图,是一个东西,和因子图不是一个东西

图优化里面每个点都是位姿点嘛,所以也叫位姿图嘛,所以我们SLAM进行的图优化就是位姿图的优化

下面拍自《视觉SLAM十四讲》P270

<think>嗯,用户想了解误差曲线误差椭圆的概念、计算方法及应用场景。首先,我需要回忆这两个术语的定义。误差曲线应该是指描述误差分布的曲线,而误差椭圆可能是在二维空间中表示误差的区域。接下来,要明确它们的数学定义。误差曲线可能涉及概率分布,比如正态分布的误差,用曲线表示不同误差值的概率密度。误差椭圆则可能是二维情况下,协方差矩阵对应的等高线,表示联合置信区域。 计算方法方面,误差曲线可能通过概率密度函数来计算,比如正态分布的PDF。对于误差椭圆,需要协方差矩阵的特征值特征向量来确定椭圆的方向轴长。具体步骤可能包括计算均值、协方差矩阵,然后特征分解得到半轴长度旋转角度。 应用场景方面,误差曲线可能用于统计学中的误差分析,信号处理中的噪声评估。误差椭圆常见于测绘学、机器人定位、导航系统中,用来可视化位置估计的不确定性。 需要确认是否有标准公式或步骤,比如误差椭圆的置信度(如95%对应的卡方分布值)。可能涉及多元正态分布的性质,以及如何将协方差转换为几何参数。还要考虑是否需要代码示例,比如用Python绘制误差椭圆。 另外,用户提供的引用中有关于椭圆曲线群的定义,可能与误差椭圆不同,但可以注意区分。引用中的变分法可能与误差分析无关,但光束应用可能涉及光学中的误差分析。需要确保回答准确,区分不同领域的术语。 总结结构:先定义误差曲线误差椭圆,然后分计算方法,再应用场景,最后代码示例。确保使用正确的中文术语数学公式,符合LaTeX格式要求。检查是否需要引用相关文献,但用户提供的引用可能不直接相关,需谨慎引用。</think>### 误差曲线与误差椭圆的定义、计算及应用 #### 1. 定义 1. **误差曲线** 误差曲线描述单一变量或一维误差的分布特性,通常用概率密度函数(如正态分布)表示。例如,测量值$x$的误差服从正态分布$N(\mu, \sigma^2)$,其概率密度函数为: $$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$ 误差曲线可用于可视化误差的集中程度置信区间[^1]。 2. **误差椭圆** 误差椭圆是二维空间中表示联合误差分布的几何图形,常用于描述两个相关变量的不确定性。其数学基础是协方差矩阵的特征分析。若变量$(x,y)$服从二元正态分布,协方差矩阵为: $$\Sigma = \begin{pmatrix} \sigma_x^2 & \rho\sigma_x\sigma_y \\ \rho\sigma_x\sigma_y & \sigma_y^2 \end{pmatrix}$$ 误差椭圆的长短轴方向由协方差矩阵的特征值特征向量决定[^2]。 --- #### 2. 计算方法 **误差曲线计算步骤** - 输入:均值$\mu$、标准差$\sigma$、置信水平(如95%) - 输出:误差范围(如$\mu \pm 1.96\sigma$) - 公式: 对于正态分布,误差曲线的置信区间为$\mu \pm z_{\alpha/2}\sigma$,其中$z_{\alpha/2}$为标准正态分布的分位数。 **误差椭圆计算步骤** 1. **计算均值协方差矩阵** 对二维数据$(x_i, y_i)$,计算均值向量$(\mu_x, \mu_y)$协方差矩阵$\Sigma$。 2. **特征分解** 求解协方差矩阵的特征值$\lambda_1, \lambda_2$(对应椭圆半轴长度的平方)特征向量$\mathbf{v}_1, \mathbf{v}_2$(决定椭圆方向)。 3. **确定置信尺度** 根据置信水平选择缩放因子$s$,例如: $$s = \sqrt{\chi^2_{2,\alpha}}$$ 其中$\chi^2_{2,\alpha}$是自由度为2的卡方分布临界值(如95%对应$s \approx 2.4477$)。 4. **椭圆参数** - 长半轴:$a = s\sqrt{\lambda_1}$ - 短半轴:$b = s\sqrt{\lambda_2}$ - 旋转角$\theta$:由主特征向量$\mathbf{v}_1$与$x$轴的夹角确定。 --- #### 3. 应用场景 1. **误差曲线** - 传感器测量误差分析(如温度传感器的精度评估) - 信号处理中的噪声分布建模[^3] 2. **误差椭圆** - **地理测绘**:GPS定位误差的可视化(如右图展示的定位点分布) - **机器人定位**:SLAM(同步定位与建图)中机器人位姿不确定性的表示 - **金融风险**:资产收益率的联合波动范围分析 --- #### 4. 代码示例(Python绘制误差椭圆) ```python import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Ellipse # 生成二维数据 np.random.seed(0) data = np.random.multivariate_normal(mean=[0, 0], cov=[[9, 4], [4, 3]], size=1000) # 计算协方差矩阵特征分解 cov = np.cov(data.T) eigvals, eigvecs = np.linalg.eigh(cov) angle = np.degrees(np.arctan2(*eigvecs[:, 1])) # 旋转角度 # 绘制椭圆(95%置信度) fig, ax = plt.subplots() ax.scatter(data[:, 0], data[:, 1], s=1) ellipse = Ellipse((0, 0), width=2*np.sqrt(5.991*eigvals[1]), height=2*np.sqrt(5.991*eigvals[0]), angle=angle, edgecolor='r', facecolor='none') ax.add_patch(ellipse) plt.show() ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诗筱涵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值