自己部署运行ManhattanSLAM 在笔记本的ubuntu18.04上面,这个我已经之前装过ORBSLAM3了
git clone https://gitee.com/maxibooksiyi/ManhattanSLAM.git
接着运行
cd ManhattanSLAM chmod +x build.sh ./build.sh
出现找不到 tinyply ,意料之中,之前看别人博客也是有这个问题
GitHub - ddiakopoulos/tinyply: C++11 ply 3d mesh format importer & exporter
git clone -b 2.3.2 https://github.com/ddiakopoulos/tinyply
cmakelists的第17行改为
cd tinyply mkdir build cd build cmake .. make sudo make install
然后继续运行./build.sh
我把build文件夹删了再重新编译
这回编译到一半似乎卡死了
这都是内存不够报的错。
我接着再运行了一遍./build.sh
往上翻还是可以找到一些东西的
都是说是因为pangolin版本高了导致的 ORB-SLAM2编译时出现找不到Eigen库的问题 - 知乎
确实,我看了下我之前装ORBSLAM3的记录,pangolin装的v0.6版本的,确实高了,可能需要降为0.5版本的。
似乎ORBSLAM3也是可以用pangolin v0.5的 【算法】跑ORB-SLAM3遇到的问题、解决方法、效果展示(环境:Ubuntu18.04+ROS melodic)_没有euroc_examples-CSDN博客
首先卸载之前装的v0.6版本的pangolin,去build文件夹下运行sudo make uninstall即可
如果是已经卸载过的,再去build文件夹运行sudo make uninstall,会提示你一些文件不存在的。
git clone -b v0.5 https://gitee.com/maxibooksiyi/Pangolin.git cd Pangolin mkdir build cd build cmake .. make sudo make install
再重新运行./build.sh似乎就剩这个报错了
参照着改cmakelists,我是知己把libtinyply.so的路径改为绝对路径了,也暂时没有把tinyply移动文件夹什么的
这么改cmakelists之后再运行./build.sh,确实可以链接libtinyply.so了,也百分之百编译完了!!!!!当然考虑到后期方便部署可以移到manhattenSLAM的Thirdparty里
这是associate.py的内容
#!/usr/bin/python # Software License Agreement (BSD License) # # Copyright (c) 2013, Juergen Sturm, TUM # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of TUM nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # Requirements: # sudo apt-get install python-argparse """ The Kinect provides the color and depth images in an un-synchronized way. This means that the set of time stamps from the color images do not intersect with those of the depth images. Therefore, we need some way of associating color images to depth images. For this purpose, you can use the ''associate.py'' script. It reads the time stamps from the rgb.txt file and the depth.txt file, and joins them by finding the best matches. """ import argparse import sys import os import numpy def read_file_list(filename): """ Reads a trajectory from a text file. File format: The file format is "stamp d1 d2 d3 ...", where stamp denotes the time stamp (to be matched) and "d1 d2 d3.." is arbitary data (e.g., a 3D position and 3D orientation) associated to this timestamp. Input: filename -- File name Output: dict -- dictionary of (stamp,data) tuples """ file = open(filename) data = file.read() lines = data.replace(","," ").replace("\t"," ").split("\n") list = [[v.strip() for v in line.split(" ") if v.strip()!=""] for line in lines if len(line)>0 and line[0]!="#"] list = [(float(l[0]),l[1:]) for l in list if len(l)>1] return dict(list) def associate(first_list, second_list,offset,max_difference): """ Associate two dictionaries of (stamp,data). As the time stamps never match exactly, we aim to find the closest match for every input tuple. Input: first_list -- first dictionary of (stamp,data) tuples second_list -- second dictionary of (stamp,data) tuples offset -- time offset between both dictionaries (e.g., to model the delay between the sensors) max_difference -- search radius for candidate generation Output: matches -- list of matched tuples ((stamp1,data1),(stamp2,data2)) """ first_keys = first_list.keys() second_keys = second_list.keys() potential_matches = [(abs(a - (b + offset)), a, b) for a in first_keys for b in second_keys if abs(a - (b + offset)) < max_difference] potential_matches.sort() matches = [] for diff, a, b in potential_matches: if a in first_keys and b in second_keys: first_keys.remove(a) second_keys.remove(b) matches.append((a, b)) matches.sort() return matches if __name__ == '__main__': # parse command line parser = argparse.ArgumentParser(description=''' This script takes two data files with timestamps and associates them ''') parser.add_argument('first_file', help='first text file (format: timestamp data)') parser.add_argument('second_file', help='second text file (format: timestamp data)') parser.add_argument('--first_only', help='only output associated lines from first file', action='store_true') parser.add_argument('--offset', help='time offset added to the timestamps of the second file (default: 0.0)',default=0.0) parser.add_argument('--max_difference', help='maximally allowed time difference for matching entries (default: 0.02)',default=0.02) args = parser.parse_args() first_list = read_file_list(args.first_file) second_list = read_file_list(args.second_file) matches = associate(first_list, second_list,float(args.offset),float(args.max_difference)) if args.first_only: for a,b in matches: print("%f %s"%(a," ".join(first_list[a]))) else: for a,b in matches: print("%f %s %f %s"%(a," ".join(first_list[a]),b-float(args.offset)," ".join(second_list[b])))
可以点这里下载 Computer Vision Group - Useful tools for the RGB-D benchmark
在associate.py所在文件夹打开终端运行下面命令
python associate.py /home/maxi/下载/rgbd_dataset_freiburg1_xyz/rgb.txt /home/maxi/下载/rgbd_dataset_freiburg1_xyz/depth.txt > associations.txt
上面这个命令运行完,associate.py的同文件夹下会多出一个associations.txt
在ManhattanSLAM目录下打开终端运行下面命令
./Example/manhattan_slam Vocabulary/ORBvoc.txt Example/TUM1.yaml /home/maxi/下载/rgbd_dataset_freiburg1_xyz /home/maxi/下载/associations.txt
真的跑起来了,感觉还是挺爽的!!!
这可能也是我第一次跑RGBD SLAM
下TUM数据集可以见这篇博文,在自己SLAM文章多的那个wiki集里。
基本上整个部署按照这篇博客走没什么问题,然后运行把readme细看一下还是可以明白的,是一些基础的TUM数据集的操作。 自己需要手动装2.3.2版本的tinyply以及v0.5版本的pangolin,以及把manhattanSLAM里cmakelists里面的libtinyply.so的路径改为找得到的路径。 https://blog.csdn.net/weixin_50508111/article/details/125421143
我又再下了一个数据集
/home/maxi/下载/rgbd_dataset_freiburg3_structure_notexture_near
python associate.py /home/maxi/下载/rgbd_dataset_freiburg3_structure_notexture_near/rgb.txt /home/maxi/下载/rgbd_dataset_freiburg3_structure_notexture_near/depth.txt > associations.txt
./Example/manhattan_slam Vocabulary/ORBvoc.txt Example/TUM1.yaml /home/maxi/下载/rgbd_dataset_freiburg3_structure_notexture_near /home/maxi/下载/associations.txt
这个数据集的环境确实就很6了,很考验了,这个ManhattanSLAM还是跑得可以的。