LLM探索:GPT类模型的几个常用参数 Top-k, Top-p, Temperature

文章介绍了LLM(大型语言模型)中的关键参数temperature、top-k和top-p的作用。temperature控制输出的随机性,temperature值越大,输出越随机;top-k从最可能的k个选项中随机选择,而top-p基于累计概率动态选择。这两种采样策略与greedydecoding相比,引入了更多的随机性,避免过度依赖最高概率的单词,优化了生成文本的多样性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Top-k抽样 模型从最可能的"k"个选项中随机选择一个 如果k=10,模型将从最可能的10个单词中选择一个
Top-p抽样 模型从累计概率大于或等于“p”的最小集合中随机选择一个 如果p=0.9,选择的单词集将是概率累计到0.9的那部分
Temperature 控制生成文本随机性的参数。较高的温度值会产生更随机的输出,而较低的温度值则会使模型更倾向于选择最可能的单词 较高的温度值,如1.0,会产生更随机的输出,而较低的温度值,如0.1,会使模型更倾向于选择最可能的单词

 

前言

上一篇文章介绍了几个开源LLM的环境搭建和本地部署,在使用ChatGPT接口或者自己本地部署的LLM大模型的时候,经常会遇到这几个参数,本文简单介绍一下~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值