LLM探索:GPT类模型的几个常用参数 Top-k, Top-p, Temperature

文章介绍了LLM(大型语言模型)中的关键参数temperature、top-k和top-p的作用。temperature控制输出的随机性,temperature值越大,输出越随机;top-k从最可能的k个选项中随机选择,而top-p基于累计概率动态选择。这两种采样策略与greedydecoding相比,引入了更多的随机性,避免过度依赖最高概率的单词,优化了生成文本的多样性。
Top-k抽样 模型从最可能的"k"个选项中随机选择一个 如果k=10,模型将从最可能的10个单词中选择一个
Top-p抽样 模型从累计概率大于或等于“p”的最小集合中随机选择一个 如果p=0.9,选择的单词集将是概率累计到0.9的那部分
Temperature 控制生成文本随机性的参数。较高的温度值会产生更随机的输出,而较低的温度值则会使模型更倾向于选择最可能的单词 较高的温度值,如1.0,会产生更随机的输出,而较低的温度值,如0.1,会使模型更倾向于选择最可能的单词

 

前言

上一篇文章介绍了几个开源LLM的环境搭建和本地部署,在使用ChatGPT接口或者自己本地部署的LLM大模型的时候,经常会遇到这几个参数,本文简单介绍一下~

  • temperature
<think>我们正在讨论如何在DB-GPT中使用本地大模型(如ChatGLM)。DB-GPT是一个开源的数据库智能交互系统,它允许用户通过自然语言与数据库进行交互。使用本地大模型可以避免依赖外部API,提高数据隐私性。 步骤: 1. 下载模型:首先需要下载ChatGLM模型的文件(通常包括模型权重和配置文件)。可以从Hugging Face模型库获取。 2. 配置模型路径:在DB-GPT的配置文件中指定模型路径。 3. 修改代码:调整DB-GPT的代码以使用本地模型而不是默认的OpenAI API。 4. 启动服务:运行DB-GPT并验证是否成功加载本地模型。 详细步骤: ### 1. 下载ChatGLM模型 我们可以使用`transformers`库提供的`AutoModel`和`AutoTokenizer`来加载模型。假设你已经下载了模型到本地目录`/path/to/chatglm-6b`。 ### 2. 修改DB-GPT的配置文件 DB-GPT通常有一个配置文件(如`configs/model_config.py`或`configs/config.yaml`),我们需要修改该文件以指定使用本地模型。 例如,在`configs/model_config.py`中,我们可以添加如下配置: ```python # 模型名称 MODEL_NAME = "chatglm-6b" # 模型路径 MODEL_PATH = "/path/to/chatglm-6b" # 使用本地模型 USE_LOCAL_MODEL = True ``` ### 3. 修改模型加载代码 在DB-GPT中,通常有一个模块负责加载模型(例如`model_adapter.py`或`llm_loader.py`)。我们需要修改这个模块,使其能够加载本地ChatGLM模型。 假设原本使用的是OpenAI的API,现在我们要替换为本地ChatGLM。我们可以创建一个新的模型适配器: ```python from transformers import AutoTokenizer, AutoModel import torch class ChatGLMModelAdapter: def __init__(self, model_path): self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda() self.model.eval() def generate(self, prompt, **kwargs): response, _ = self.model.chat(self.tokenizer, prompt, history=[], **kwargs) return response ``` 然后在DB-GPT的主逻辑中,我们使用这个适配器: ```python # 根据配置加载模型 if config.USE_LOCAL_MODEL: from .chatglm_adapter import ChatGLMModelAdapter model_adapter = ChatGLMModelAdapter(config.MODEL_PATH) else: # 否则使用OpenAI等 pass ``` ### 4. 修改对话处理逻辑 在DB-GPT中,处理用户查询的部分(可能在一个名为`dbgpt/app/llm_chat.py`的文件中)需要调用我们新创建的适配器。 例如,将原来的OpenAI调用: ```python response = openai.ChatCompletion.create(...) ``` 替换为: ```python response = model_adapter.generate(prompt, max_length=4096, temperature=0.7) ``` ### 5. 注意事项 - 确保有足够的GPU内存(ChatGLM-6B大约需要13GB GPU内存)。 - 如果内存不足,可以考虑使用量化版本(如`model = AutoModel.from_pretrained(model_path, trust_remote_code=True).quantize(8).half().cuda()`)或者使用CPU(但速度会慢很多)。 - 在启动时,模型加载可能需要几分钟。 ### 6. 完整示例代码 下面是一个简化的示例,展示如何在DB-GPT中集成ChatGLM: `chatglm_adapter.py`: ```python from transformers import AutoTokenizer, AutoModel class ChatGLMModelAdapter: def __init__(self, model_path, device='cuda'): self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().to(device) self.model.eval() def generate(self, prompt, history=None, max_length=4096, temperature=0.7, top_p=0.9, **kwargs): if history is None: history = [] response, updated_history = self.model.chat( self.tokenizer, prompt, history=history, max_length=max_length, temperature=temperature, top_p=top_p ) return response ``` 在主要服务文件中(如`llm_service.py`): ```python from configs.model_config import MODEL_PATH, USE_LOCAL_MODEL from .chatglm_adapter import ChatGLMModelAdapter if USE_LOCAL_MODEL: model_adapter = ChatGLMModelAdapter(MODEL_PATH) else: # 其他模型适配器 pass def handle_query(query): response = model_adapter.generate(query) return response ``` ### 7. 运行和测试 启动DB-GPT服务,然后使用自然语言进行查询,观察是否使用本地模型进行响应。 ### 8. 可能遇到的问题及解决 - **问题:缺少`cuda`或`torch`相关错误**:确保安装了正确版本的PyTorch(支持GPU的版本)。 - **问题:模型加载慢**:第一次加载需要下载模型文件(如果未提前下载),建议提前下载好模型- **问题:显存不足**:尝试使用量化(如8位或4位量化)或使用更小的模型。 通过以上步骤,你应该能够在DB-GPT中成功使用本地ChatGLM模型--- ### §§相关问题§§: 1. 如何对ChatGLM模型进行量化以降低显存占用? 2. 如何在DB-GPT中集成其他本地大模型(如LLaMA、Baichuan)? 3. 如何在CPU上运行ChatGLM模型? 4. 如何优化DB-GPT的响应速度?</think>## 在 DB-GPT 中使用本地大模型(如 ChatGLM)的完整指南 在 DB-GPT 中使用本地大模型(如 ChatGLM)需要配置模型路径、加载方式和推理引擎。以下是详细步骤和代码实现: ### 一、核心配置步骤 #### 1. 修改配置文件 `configs/model_config.py` ```python # 模型配置示例 MODEL_CONFIG = { "chatglm-6b": { "model_name": "chatglm-6b", "model_path": "/path/to/your/chatglm-6b", # 本地模型路径 "device": "cuda", # 或 "cpu" "precision": "fp16", # fp16/fp32/int8/int4 "max_length": 4096, "temperature": 0.7, "top_p": 0.9, "use_local": True # 关键:使用本地模型 }, # 其他模型配置... } # 设置默认模型 LLM_MODEL = "chatglm-6b" ``` #### 2. 修改模型加载器 `model/loader.py` ```python from transformers import AutoModel, AutoTokenizer def load_local_model(model_config): """加载本地模型""" model_path = model_config["model_path"] device = model_config["device"] # 加载 tokenizer tokenizer = AutoTokenizer.from_pretrained( model_path, trust_remote_code=True ) # 加载模型 model = AutoModel.from_pretrained( model_path, trust_remote_code=True, device_map=device, torch_dtype=torch.float16 if model_config["precision"] == "fp16" else torch.float32 ) # 量化配置(可选) if model_config["precision"] == "int8": model = model.quantize(8) elif model_config["precision"] == "int4": model = model.quantize(4) return model, tokenizer ``` ### 二、完整集成代码示例 #### 1. 创建模型适配器 `model/chatglm_adapter.py` ```python import torch from transformers import AutoModel, AutoTokenizer class ChatGLMAdapter: def __init__(self, model_path, device="cuda", precision="fp16"): self.device = device self.tokenizer = AutoTokenizer.from_pretrained( model_path, trust_remote_code=True ) # 加载模型 torch_dtype = torch.float16 if precision == "fp16" else torch.float32 self.model = AutoModel.from_pretrained( model_path, trust_remote_code=True, device_map=device, torch_dtype=torch_dtype ).eval() def generate(self, prompt, max_length=4096, temperature=0.7, top_p=0.9): """生成响应""" inputs = self.tokenizer( prompt, return_tensors="pt" ).to(self.device) outputs = self.model.generate( **inputs, max_length=max_length, temperature=temperature, top_p=top_p, do_sample=True ) response = self.tokenizer.decode( outputs[0], skip_special_tokens=True ) return response[len(prompt):] # 返回生成的文本部分 ``` #### 2. 在主服务中集成 `app/main.py` ```python from model.chatglm_adapter import ChatGLMAdapter from configs import model_config # 初始化本地模型 chatglm_adapter = ChatGLMAdapter( model_path=model_config.MODEL_CONFIG["chatglm-6b"]["model_path"], device=model_config.MODEL_CONFIG["chatglm-6b"]["device"], precision=model_config.MODEL_CONFIG["chatglm-6b"]["precision"] ) def handle_query(query): """处理用户查询""" # 1. 生成SQL prompt = f"作为数据库专家,请为以下查询生成SQL: {query}" sql = chatglm_adapter.generate(prompt) # 2. 执行SQL # ...(数据库连接和执行代码) # 3. 解释结果 explanation_prompt = f"用自然语言解释以下SQL结果: {sql_result}" explanation = chatglm_adapter.generate(explanation_prompt) return sql, explanation ``` ### 三、关键优化技巧 #### 1. 量化模型减少显存占用(4位量化) ```python # 修改模型加载部分 from transformers import BitsAndBytesConfig quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16 ) model = AutoModel.from_pretrained( model_path, quantization_config=quant_config, device_map="auto" ) ``` #### 2. 使用 vLLM 加速推理 ```python from vllm import LLM, SamplingParams class ChatGLMvLLMAdapter: def __init__(self, model_path): self.llm = LLM( model=model_path, tensor_parallel_size=2, # GPU数量 dtype="half" # 半精度 ) self.sampling_params = SamplingParams( temperature=0.7, top_p=0.9, max_tokens=4096 ) def generate(self, prompt): outputs = self.llm.generate([prompt], self.sampling_params) return outputs[0].outputs[0].text ``` ### 四、常见问题解决 1. **模型加载失败**: - 确保模型路径正确 - 检查文件权限 `ls -l /path/to/model` - 验证模型完整性(检查文件大小) 2. **显存不足**: ```bash # 使用CPU卸载 model = AutoModel.from_pretrained(..., device_map="auto", offload_folder="offload") # 或使用4位量化 model = AutoModel.from_pretrained(..., load_in_4bit=True) ``` 3. **推理速度慢**: - 使用 vLLM 或 Text Generation Inference (TGI) - 启用连续批处理 - 使用 FlashAttention ### 五、部署建议 1. **使用 Docker 部署**: ```Dockerfile FROM python:3.10-slim WORKDIR /app COPY . . RUN pip install -r requirements.txt CMD ["python", "app/main.py"] ``` 2. **启动脚本**: ```bash # 启动服务 python -m app.main \ --model_path /models/chatglm-6b \ --device cuda \ --precision int4 ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

具身机器人曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值