Hummingbird是一个用于将经过训练的传统 ML 模型编译为张量计算的库

Hummingbird是一个库,它将传统的机器学习模型转换为张量计算形式,以利用神经网络框架如PyTorch的优化和硬件加速。这个库支持决策树、随机森林、LightGBM和XGBoost等模型,提供与SklearnAPI兼容的接口,并可以将模型转换为PyTorch、TorchScript、ONNX和TVM。通过这种方式,用户可以在不重构模型的情况下加速推理过程,特别是在GPU上。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍

Hummingbird是一个用于将经过训练的传统 ML 模型编译为张量计算的库。Hummingbird允许用户无缝地利用神经网络框架(例如PyTorch)来加速传统的 ML 模型。感谢Hummingbird,用户可以受益于:(1)神经网络框架中实现的所有当前和未来的优化;(2)本机硬件加速;(3) 拥有支持传统模型和神经网络模型的独特平台;并且无需重新设计模型即可拥有所有这些 (4)。

目前,您可以使用Hummingbird将经过训练的传统 ML 模型转换为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值