图对比学习综述(一):对比范式与优化目标
1. 引言
图表示学习通常专注于将节点结构和特征编码成低维的稠密向量,现有的图神经网络模型往往结合(半)监督学习,因此需要丰富的标签作为监督信号。
近来,随着NLP和CV领域中自监督学习的发展,这种不依赖标注数据的学习范式成为了研究的主流热点。在CV中,通过实例判别作为代理任务,从而引出的对比学习范式,成为了自监督学习的主流之一,并在许多表示学习任务中取得了与有监督任务相当的性能。因此,将适用于图像数据上的对比学习方法有效地迁移至图数据上,也成为了图学习研究领域一个有趣的问题,在此研究背景下,诞生了许多适用于图的对比学习方法。
本图对比学习综述系列,将以方法论的视角出发,从 What, How, Why 三个方面探讨对比学习中的对比范式与优化目标,并结合图对比