图对比学习综述(一):对比范式与优化目标

本文概述了图对比学习的发展,重点介绍了自监督学习中的对比范式,如图增强、对比模式和优化目标,以及InfoNCE等方法。文章讨论了如何通过无标签数据训练图神经网络,强调了互信息最大化和正负样本对比的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图对比学习综述(一):对比范式与优化目标

goprime

1. 引言

图表示学习通常专注于将节点结构和特征编码成低维的稠密向量,现有的图神经网络模型往往结合(半)监督学习,因此需要丰富的标签作为监督信号。

近来,随着NLP和CV领域中自监督学习的发展,这种不依赖标注数据的学习范式成为了研究的主流热点。在CV中,通过实例判别作为代理任务,从而引出的对比学习范式,成为了自监督学习的主流之一,并在许多表示学习任务中取得了与有监督任务相当的性能。因此,将适用于图像数据上的对比学习方法有效地迁移至图数据上,也成为了图学习研究领域一个有趣的问题,在此研究背景下,诞生了许多适用于图的对比学习方法。

本图对比学习综述系列,将以方法论的视角出发,从 What, How, Why 三个方面探讨对比学习中的对比范式与优化目标,并结合图对比

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值