大模型 freeze参数冻结哪些层?

llama factory freeze参数冻结哪些层

Answer

LLaMA Factory中的freeze微调方法允许用户选择性地冻结模型的某些层,只对部分层进行微调。具体来说:

  1. freeze微调方法会根据用户设置的参数来决定冻结哪些层:
    • 可以设置num_layer_trainable参数来指定要训练的层数
    • 可以设置train_on_inputs参数来决定是训练前面的层还是后面的层
    • 也可以通过freeze_parameters参数直接指定要冻结的具体层
  2. 通常的做法是冻结模型的前面大部分层,只微调最后几层。这是因为:
    • 前面的层学习到的是更通用的特征
    • 后面的层更专注于特定任务
  3. 冻结层的参数会被设置为
### 如何在训练 Swin Transformer 时冻结参数 #### 方法概述 为了有效利用预训练模型并提高特定任务上的性能,可以采用迁移学习策略。具体来说,在初始阶段冻结除了分类之外的其他参数,待初步收敛后再逐步解冻部分或全部权重进行微调。 对于基于 PyTorch 的框架而言,可以通过设置 `requires_grad` 属性来控制哪些参数参与反向传播更新过程。当某一或多模块中的所有张量其 `requires_grad=False` 时,则这些参数不会被优化器所影响;反之则会正常参与到梯度计算当中去[^1]。 针对 Swin Transformer 这样的复杂结构,如果希望只保留高特征提取能力而暂时固定住底表示的学习状态,那么就需要遍历整个网络架构并对指定范围内的子组件执行上述操作: ```python import torch.nn as nn def freeze_bottom_layers(model, num_frozen_stages=2): """ 冻结给定数量stage之前的SwinTransformer参数: model (nn.Module): 待处理的目标神经网络实例对象. num_frozen_stages (int): 需要保持不变的最下几级Stage数目,默认值设为2. 返回: NoneType: 此函数不返回任何显式的输出结果. """ # 假设model是一个标准定义好的SwinTransformer类的对象 for param in model.parameters(): param.requires_grad = False if hasattr(model, 'stages'): stages_to_unfreeze = max(0, len(model.stages)-num_frozen_stages) for i in range(stages_to_unfreeze, len(model.stages)): for param in model.stages[i].parameters(): param.requires_grad = True elif isinstance(model.patch_embed, nn.Sequential) and \ all([isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear) for layer in list(model.patch_embed)]): # 如果patch embedding是由卷积/线性变换组成的序列化容器, # 则允许这部分继续调整适应新数据集特性 for param in model.patch_embed[-min(num_frozen_stages, 2)].parameters(): param.requires_grad = True else: raise ValueError('Model does not follow expected structure.') ``` 此代码片段展示了如何通过自定义辅助函数 `freeze_bottom_layers()` 来实现对 Swin Transformer 中较低级别 Stage 或 Patch Embedding 组件的选择性冻结功能。这里假设输入模型遵循官方文档中描述的标准设计模式,并且内部存在名为 `stages` 和 / 或 `patch_embed` 成员变量用于存储不同尺度下的局部感受野信息以及图像切片映射关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值