ICML 2025 | 时间序列(Time Series)论文总结

ICML 2025 | 时间序列(Time Series)论文总结

原创 ST_Learner 时空探索之旅
 2025年05月16日 08:40 江苏

ICML 2025将在2025年7月13日至7月19日(周六)在温哥华会议中心举行,本文总结了ICML 2025有关时间序列(Time Series)相关文章,共计63篇。

时间序列Topic:预测,分类,异常检测,生成,概率预测,不规则时间序列,因果发现,基础模型,大语言模型,多模态等。如有疏漏,欢迎补充!

如果论文总结中有(模型)图,则论文已经在网络上公开(arXivOpenreview等)


  1. Patch-wise Structural Loss for Time Series Forecasting

  2. TimeDART: A Diffusion Autoregressive Transformer  for Self-Supervised Time Series Representation

  3. BRIDGE: Bootstrapping Text to Control Time-Series Generation via Multi-Agent Iterative Optimisation and Diffusion Modelling

  4. Hi-Patch: Hierarchical Patch GNN for Irregular Multivariate Time Series

  5. HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

  6. LSCD: Lomb--Scargle Conditioned Diffusion for Irregular Time series Imputation

  7. LETS Forecast: Learning Embedology for Time Series Forecasting

  8. TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

  9. Towards a General Time Series Forecasting Model with Unified Representation and Adaptive Transfer

  10. When Will It Fail?: Anomaly to Prompt for Forecasting Future Anomalies in Time Series

  11. TransPL: Pseudo-Labeling via Code Transitions for Time Series Adaptation

  12. Channel Normalization for Time Series Channel Identification

  13. Slimming the Fat-Tail: MoF for Adaptive Time Series Modeling

  14. Privacy Amplification by Structured Subsampling for Deep Differentially Private Time Series Forecasting

  15. CMoS: Rethinking Time Series Prediction Through the Lens of Chunk-wise Spatial Correlations

  16. Exploring Representations and Interventions in Time Series Foundation Models

  17. CFPT: Empowering Time Series Forecasting through Cross-Frequency Interaction and Periodic-Aware Timestamp Modeling

  18. Causal Discovery from Conditionally Stationary Time Series

  19. TimeBridge: Non-Stationarity Matters for Long-term Time Series Forecasting

  20. AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting

  21. TimePro: Efficient Multivariate Long-term Time Series Forecasting with Variable- and Time-Aware Hyper-state

  22. TimeFilter: Patch-Specific Spatial-Temporal Graph Filtration for Time Series Forecasting

  23. A Non-isotropic Time Series Diffusion Model with Moving Average Transitions

  24. Spectral-Aware Reservoir Computing for Fast and Accurate Time Series Classification

  25. Time Series Representations with Hard-Coded Invariances

  26. Time-VLM: Exploring Multimodal Vision-Language Models for Augmented Time Series Forecasting

  27. Non-stationary Diffusion For Probabilistic Time Series Forecasting

  28. VAE: A Koopman-Kalman Enhanced Variational AutoEncoder for Probabilistic Time Series Forecasting

  29. LangTime: A Language-Guided Unified Model for Time Series Forecasting with Proximal Policy Optimization

  30. Shifting time: Time-series forecasting with Khatri-Rao neural operators

  31. Optimal Information Retention for Time-Series Explanations

  32. Lightweight Online Adaption for Time Series Foundation Model Forecasts

  33. Conditional Diffusion Model with Nonlinear Data Transformation for Time Series Forecasting

  34. Retrieval Augmented Time Series Forecasting

  35. IMTS is Worth Time  Channel Patches: Visual Masked Autoencoders for Irregular Multivariate Time Series Prediction

  36. Relational Conformal Prediction for Correlated Time Series

  37. In-Context Fine-Tuning for Time-Series Foundation Models

  38. FSTLLM: Spatio-Temporal LLM for Few Shot Time Series Forecasting

  39. A Closer Look at Transformers for Time Series Forecasting: Understanding Why They Work and Where They Struggle

  40. Temporal Query Network for Efficient Multivariate Time Series Forecasting

  41. TimePoint: Accelerated Time Series Alignment via Self-Supervised Keypoint and Descriptor Learning

  42. LightGTS: A Lightweight General Time Series Forecasting Model

  43. Efficient Time Series Processing for Transformers and State-Space Models through Token Merging

  44. SKOLR: Structured Koopman Operator Linear RNN for Time-Series Forecasting

  45. Generating Hypotheses of Dynamic Causal Graphs in Neuroscience: Leveraging Generative Factor Models of Observed Time Series

  46. LAST SToP for Modeling Asynchronous Time Series

  47. WAVE: Weighted Autoregressive Varing Gate for Time Series Forecasting

  48. KAN-AD: Time Series Anomaly Detection with Kolmogorov–Arnold Networks

  49. Sundial: A Family of Highly Capable Time Series Foundation Models

  50. KoNODE: Koopman-Driven Neural Ordinary Differential Equations with Evolving Parameters for Time Series Analysis

  51. ITFormer: Bridging Time Series and Natural Language for Multi-Modal QA with Large-Scale Multitask Dataset

  52. FIC-TSC: Learning Time Series Classification with Fisher Information Constraint

  53. Learning Soft Sparse Shapes for Efficient Time-Series Classification

  54. VisionTS: Visual Masked Autoencoders Are Free-Lunch Zero-Shot Time Series Forecasters

  55. Winner-takes-all for Multivariate Probabilistic Time Series Forecasting

  56. Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting

  57. VerbalTS: Generating Time Series from Texts

  58. TimeBase: The Power of Minimalism in Efficient Long-term Time Series Forecasting

  59. Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization

  60. Empowering Time Series Foundation Models with Sparse Mixture of Experts

  61. Causality-Aware Contrastive Learning for Robust Multivariate Time-Series Anomaly Detection

  62. Timing: Temporality-Aware Integrated Gradients for Time Series Explanation

  63. Arrow: Accelerator for Time Series Causal Discovery with Time Weaving


图片

1 TimeDART: A Diffusion Autoregressive Transformer for Self-Supervised Time Series Representation

链接https://icml.cc/virtual/2025/poster/43701

作者:Daoyu Wang, Mingyue Cheng, Zhiding Liu, Qi Liu

关键词:预测,自回归,自监督

时序人:TimeDART:结合扩散去噪与自回归建模的时间序列自监督学习新框架

图片

2 Time Series Representations with Hard-Coded Invariances

链接https://icml.cc/virtual/2025/poster/45216

作者:Thibaut Germain, Chrysoula Kosma, Laurent Oudre

关键词:表示学习,不变性,卷积

图片

3 Exploring Representations and Interventions in Time Series Foundation Models

链接https://icml.cc/virtual/2025/poster/44453

作者:Michal Wilinski, Mononito Goswami, Nina Żukowska, Willa Potosnak, Artur Dubrawski

关键词:基础模型,表示学习

图片

4 Towards a General Time Series Forecasting Model with Unified Representation and Adaptive Transfer

链接https://icml.cc/virtual/2025/poster/46383

作者:Yihang Wang, Yuying Qiu, Peng Chen, Kai Zhao, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang, Chenjuan Guo

关键词:预测,少样本,零样本

ROSE:领域知识自适应迁移的时间序列预测基础模型

图片

5 TimeFilter: Patch-Specific Spatial-Temporal Graph Filtration for Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/46502

作者:Yifan Hu, Guibin Zhang, Peiyuan Liu, Disen Lan, Naiqi Li, Dawei Cheng, Tao Dai, Shutao Xia, Shirui Pan

关键词:预测,时空图,通道关系

圆圆的算法笔记:Patch粒度图学习多元时序预测新方法,灵活建模变量间和时序间关系

图片

6 Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization

链接https://icml.cc/virtual/2025/poster/46131

作者:Luca Masserano, Abdul Fatir Ansari, Boran Han, Xiyuan Zhang, Christos Faloutsos, Michael Mahoney, Andrew Wilson, Youngsuk Park, Syama Sundar Yadav Rangapuram, Danielle Maddix, Yuyang Wang

关键词:预测,基础模型,小波变换,token化

图片

7 Time-VLM: Exploring Multimodal Vision-Language Models for Augmented Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/44762

作者:Siru Zhong, Weilin Ruan, Ming Jin, Huan Li, Qingsong Wen, Yuxuan Liang

关键词:预测,多模态,视觉语言模型

圆圆的算法笔记:时序+图像+文本,多模态增强的时序预测模型

图片

8 Lightweight Online Adaption for Time Series Foundation Model Forecasts

链接https://icml.cc/virtual/2025/poster/44485

作者:Thomas Lee, William Toner, Rajkarn Singh, Artjom Joosen, Martin Asenov

关键词:预测,基础模型,在线学习

图片

9 When Will It Fail?: Anomaly to Prompt for Forecasting Future Anomalies in Time Series

链接https://icml.cc/virtual/2025/poster/45978

作者:Min-Yeong Park, Won-Jeong Lee, Seong Tae Kim, Gyeong-Moon Park

关键词:异常检测,提示

图片

10 TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/46428

作者:Qinglong Liu, Cong Xu, Wenhao Jiang, Kaixuan Wang, Lin Ma, Haifeng Li

关键词:预测,非平稳性,多尺度

11 AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/43518

作者:Abdelhakim Benechehab, Vasilii Feofanov, Giuseppe Paolo, Albert Thomas, Maurizio Filippone, Balázs Kégl

关键词:预测,基础模型,单变量,概率预测

图片

12 TimePro: Efficient Multivariate Long-term Time Series Forecasting with Variable- and Time-Aware Hyper-state

链接https://icml.cc/virtual/2025/poster/43851

作者:Xiaowen Ma, Zhen-Liang Ni, Shuai Xiao, Xinghao Chen

关键词:预测,时间感知,变量感知

13 Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/43827

作者:Zhining Liu, Ze Yang, Xiao Lin, Ruizhong Qiu, Tianxin Wei, Yada Zhu, Hendrik Hamann, Jingrui He, Hanghang Tong

关键词:预测,自适应

14 TimeBridge: Non-Stationarity Matters for Long-term Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/43973

作者:Peiyuan Liu, Beiliang Wu, Yifan Hu, Naiqi Li, Tao Dai, Jigang Bao, Shutao Xia

关键词:长时预测,非平稳性

时序人:清华与深大提出TimeBridge,有效处理长期时间序列预测中的非平稳性问题

图片

15 HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/43741

作者:Boyuan Li, Yicheng Luo, Zhen Liu, Junhao Zheng, Jianming Lv, Qianli Ma

关键词:预测,超图神经网络,不规则多元时序

16 LETS Forecast: Learning Embedology for Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/45595

作者:Abrar Majeedi, Viswanatha Reddy Gajjala, Satya Sai Srinath Namburi GNVV, Nada Elkordi, Yin Li

关键词:预测经验动态建模

17 Privacy Amplification by Structured Subsampling for Deep Differentially Private Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/44722

作者:Jan Schuchardt, Mina Dalirrooyfard, Jed Guzelkabaagac, Anderson Schneider, Yuriy Nevmyvaka, Stephan Günnemann

关键词:预测,差分隐私

图片

18 TimeBase: The Power of Minimalism in Efficient Long-term Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/45815

作者:Qihe Huang, Zhengyang Zhou, Kuo Yang, Zhongchao Yi, Xu Wang, Yang Wang

关键词:预测,极简主义,高效性

19 CFPT: Empowering Time Series Forecasting through Cross-Frequency Interaction and Periodic-Aware Timestamp Modeling

链接https://icml.cc/virtual/2025/poster/44425

作者:Feifei Kou, Jiahao Wang, Lei Shi, Yuhan Yao, Yawen Li, Suguo Zhu, Zhongbao Zhang, Junping Du

关键词:预测,时间戳建模,跨频交互

20 Winner-takes-all for Multivariate Probabilistic Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/46485

作者:Adrien Cortes, Remi Rehm, Victor Letzelter

关键词:预测,多元概率预测

21 Conditional Diffusion Model with Nonlinear Data Transformation for Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/44243

作者:RISHI JINKA, Venkata Sai Mothish Gonugunta, Deepak N. Subramani

关键词:预测,非线性变换,条件扩散模型

22 Patch-wise Structural Loss for Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/44030

作者:Dilfira Kudrat, Zongxia Xie, Yanru Sun, Tianyu Jia, Qinghua Hu

关键词:预测,结构化损失

圆圆的算法笔记:时序预测损失函数优化:Patch粒度分布损失函数提升时序预测效果

科学最TOP:Patch-wise Structural:一种引入局部统计特性的时序预测损失函数

图片

23 FSTLLM: Spatio-Temporal LLM for Few Shot Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/44031

作者:Yue Jiang, Yile Chen, Xiucheng Li, Qin Chao, SHUAI LIU, Gao Cong

关键词:预测,少样本,时空大模型

24 Non-stationary Diffusion For Probabilistic Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/44783

作者:Weiwei Ye, Zhuopeng Xu, Ning Gui

关键词:预测,概率预测,扩散,非平稳

图片

25 VAE: A Koopman-Kalman Enhanced Variational AutoEncoder for Probabilistic Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/46346

作者:Xingjian Wu, Xiangfei Qiu, Hongfan Gao, Jilin Hu, Chenjuan Guo, Bin Yang

关键词:概率预测,变分自编码器,库普曼,卡尔曼

26 Shifting time: Time-series forecasting with Khatri-Rao neural operators

链接https://icml.cc/virtual/2025/poster/44565

作者:Srinath Dama, Kevin L Course, Prasanth B Nair

关键词:时间序列建模、时空建模、时移算子、Khatri-Rao 神经算子、神经算子、算子学习

27 LangTime: A Language-Guided Unified Model for Time Series Forecasting with Proximal Policy Optimization

链接https://icml.cc/virtual/2025/poster/45059

作者:Wenzhe Niu, Zongxia Xie, Yanru Sun, Wei He, Man Xu, Chao Hao

关键词:预测,语言模型,近端策略优化(PPO)

图片

28 Retrieval Augmented Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/45826

作者:Sungwon Han, Seungeon Lee, MEEYOUNG CHA, Sercan Arik, Jinsung Yoon

关键词:预测,检索增强(RAG)

圆圆的算法笔记:ICML'25 | 基于多尺度检索的时间序列预测方法

图片

29 Temporal Query Network for Efficient Multivariate Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/44603

作者:Shengsheng Lin, Haojun Chen, Haijie Wu, Chunyun Qiu, Weiwei Lin

关键词:预测,时间查询,多元时间序列预测

30 A Closer Look at Transformers for Time Series Forecasting: Understanding Why They Work and Where They Struggle

链接https://icml.cc/virtual/2025/poster/44262

作者:Yu Chen, Nathalia Céspedes, Payam Barnaghi

关键词:预测,Transformer

31 LightGTS: A Lightweight General Time Series Forecasting Model

链接https://icml.cc/virtual/2025/poster/44879

作者:Yihang Wang, Yuying Qiu, Peng Chen, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang, Chenjuan Guo

关键词:预测,轻量化

32 SKOLR: Structured Koopman Operator Linear RNN for Time-Series Forecasting

链接https://icml.cc/virtual/2025/poster/44949

作者:Yitian Zhang, Liheng Ma, Antonios Valkanas, Boris Oreshkin, Mark Coates

关键词:预测,库普曼算子

33 WAVE: Weighted Autoregressive Varing Gate for Time Series Forecasting

链接https://icml.cc/virtual/2025/poster/45318

作者:Jiecheng Lu, Xu Han, Yan Sun, Shihao Yang

关键词:预测,自回归

图片

34 VisionTS: Visual Masked Autoencoders Are Free-Lunch Zero-Shot Time Series Forecasters

链接https://icml.cc/virtual/2025/poster/46441

作者:Mouxiang Chen, Lefei Shen, Zhuo Li, Xiaoyun Wang, Jianling Sun, Chenghao Liu

关键词:预测,多模态

机器之心:时序=图像?无需微调,视觉MAE跨界比肩最强时序预测大模型

图片

35 Causality-Aware Contrastive Learning for Robust Multivariate Time-Series Anomaly Detection

链接https://icml.cc/virtual/2025/poster/45960

作者:HyunGi Kim, Jisoo Mok, Dong Jun Lee, Jaihyun Lew, Sungjae Sungjae, Sungroh Yoon

关键词:异常检测,因果感知

36 KAN-AD: Time Series Anomaly Detection with Kolmogorov–Arnold Networks

链接https://icml.cc/virtual/2025/poster/45584

作者:Quan Zhou, Changhua Pei, Fei Sun, Jianhui LI, haiming zhang, Gaogang Xie, Dan Pei, Zhengwei Gao, HanJing

关键词:异常检测,KAN

图片

37 Learning Soft Sparse Shapes for Efficient Time-Series Classification

链接https://icml.cc/virtual/2025/poster/46130

作者:Zhen Liu, Yicheng Luo, Boyuan Li, Emadeldeen Eldele, Min Wu, Qianli Ma

关键词:分类,高效性

38 FIC-TSC: Learning Time Series Classification with Fisher Information Constraint

链接https://icml.cc/virtual/2025/poster/45977

作者:Xiwen Chen, Wenhui Zhu, Peijie Qiu, Hao Wang, Huayu Li, ZIHAN LI, Yalin Wang, Aristeidis Sotiras, Abolfazl Razi

关键词:分类

图片

39 Spectral-Aware Reservoir Computing for Fast and Accurate Time Series Classification

链接https://icml.cc/virtual/2025/poster/45987

作者:Shikang Liu, Chuyang Wei, Xiren Zhou, Huanhuan Chen

关键词:分类,谱感知

40 Generating Hypotheses of Dynamic Causal Graphs in Neuroscience: Leveraging Generative Factor Models of Observed Time Series

链接https://icml.cc/virtual/2025/poster/45009

作者:Zachary Brown, David Carlson

关键词:因果图

41 Causal Discovery from Conditionally Stationary Time Series

链接https://icml.cc/virtual/2025/poster/44317

作者:Carles Balsells-Rodas, Xavier Sumba, Tanmayee Narendra, Ruibo Tu, Gabriele Schweikert, Hedvig Kjellström, Yingzhen Li

关键词:因果发现,平稳时间序列

42 Arrow: Accelerator for Time Series Causal Discovery with Time Weaving

链接https://icml.cc/virtual/2025/poster/46084

作者:YUANYUAN YAO, Yuan Dong, Lu Chen, Kun Kuang, Ziquan Fang, Cheng Long, Yunjun Gao, TIANYI LI

关键词:因果发现

43 KoNODE: Koopman-Driven Neural Ordinary Differential Equations with Evolving Parameters for Time Series Analysis

链接https://icml.cc/virtual/2025/poster/45804

作者:Hanru Bai, Weiyang Ding

关键词:时间序列分析,库普曼理论

44 TransPL: Pseudo-Labeling via Code Transitions for Time Series Adaptation

链接https://icml.cc/virtual/2025/poster/46696

作者:Jaeho Kim, Seulki Lee

关键词:时间序列自适应

45 Efficient Time Series Processing for Transformers and State-Space Models through Token Merging

链接https://icml.cc/virtual/2025/poster/44933

作者:Leon Götz, Marcel Kollovieh, Stephan Günnemann, Leo Schwinn

关键词:时间序列处理加速,token化,状态空间模型

图片

46 A Non-isotropic Time Series Diffusion Model with Moving Average Transitions

链接https://icml.cc/virtual/2025/poster/43547

作者:Chenxi Wang, Linxiao Yang, Zhixian Wang, Liang Sun, Yi Wang

47 LAST SToP for Modeling Asynchronous Time Series

链接https://icml.cc/virtual/2025/poster/45155

作者:Shubham Gupta, Thibaut Durand, Graham Taylor, Lilian Bialokozowicz

关键词:异步时间序列,大模型

图片

48 Slimming the Fat-Tail: MoF for Adaptive Time Series Modeling

链接https://icml.cc/virtual/2025/poster/44444

作者:Tianyu Liu, kai sun, Fuchun Sun, Yu Luo, Yuanlong Zhang

关键词:时间序列建模,变形流

49 In-Context Fine-Tuning for Time-Series Foundation Models

链接https://icml.cc/virtual/2025/poster/43707

作者:Matthew Faw, Rajat Sen, Yichen Zhou, Abhimanyu Das

图片

50 Sundial: A Family of Highly Capable Time Series Foundation Models

链接https://icml.cc/virtual/2025/poster/45591

作者:Yong Liu, Guo Qin, Zhiyuan Shi, Zhi Chen, Caiyin Yang, Xiangdong Huang, Jianmin Wang, Mingsheng Long

关键词:基础模型,多任务

AI论文速读 | 日晷(Sundial):一系列高性能时间序列基础模型

图片

51 ITFormer: Bridging Time Series and Natural Language for Multi-Modal QA with Large-Scale Multitask Dataset

链接https://icml.cc/virtual/2025/poster/45847

作者:Yilin Wang, Peixuan Lei, chen tao, Jie Song, Haoyuzhe, Yuxuan Zhang, LEI JIA, Yuanxiang Li, Zhongyu Wei

关键词:多模态问答,多任务

52 TimePoint: Accelerated Time Series Alignment via Self-Supervised Keypoint and Descriptor Learning

链接https://icml.cc/virtual/2025/poster/44741

作者:Ron Shapira Weber, shahar benishay, Shahaf E. Finder, Andrey Lavrinenko, Oren Freifeld

关键词:对齐,自监督

53 Channel Normalization for Time Series Channel Identification

链接https://icml.cc/virtual/2025/poster/45365

作者:Seunghan Lee, Taeyoung Park, Kibok Lee

关键词:通道归一化,通道验证

54 CMoS: Rethinking Time Series Prediction Through the Lens of Chunk-wise Spatial Correlations

链接https://icml.cc/virtual/2025/poster/44558

作者:Haotian Si, Changhua Pei, Dan Pei, Gaogang Xie, Jianhui LI

关键词:预测,分块空间

55 LSCD: Lomb--Scargle Conditioned Diffusion for Irregular Time series Imputation

链接https://icml.cc/virtual/2025/poster/45821

作者:Elizabeth M Fons Etcheverry, Alejandro Sztrajman, Yousef El-Laham, Luciana Ferrer, Svitlana Vyetrenko, Manuela Veloso

关键词:插补,不规则时间序列,扩散

56 VerbalTS: Generating Time Series from Texts

链接https://icml.cc/virtual/2025/poster/45631

作者:Shuqi Gu, Chuyue Li, Baoyu Jing, Kan Ren

关键词:时间序列生成,文本数据

57 Hi-Patch: Hierarchical Patch GNN for Irregular Multivariate Time Series

链接https://icml.cc/virtual/2025/poster/44115

作者:Yicheng Luo, Bowen Zhang, Zhen Liu, Qianli Ma

关键词:不规则时间序列,图神经网络

图片

58 BRIDGE: Bootstrapping Text to Control Time-Series Generation via Multi-Agent Iterative Optimisation and Diffusion Modelling

链接https://icml.cc/virtual/2025/poster/43728

作者:Hao Li, Yu-Hao Huang, Chang Xu, Viktor Schlegel, Renhe Jiang, Riza Batista-Navarro, Goran Nenadic, Jiang Bian

关键词:生成,AI智能体

图片

59 Empowering Time Series Foundation Models with Sparse Mixture of Experts

链接https://icml.cc/virtual/2025/poster/45201

作者:Xu Liu, Juncheng Liu, Gerald Woo, Taha Aksu, Yuxuan Liang, Roger Zimmermann, Chenghao Liu, Junnan Li, Silvio Savarese, Caiming Xiong, Doyen Sahoo

关键词: 时间序列基础模型,混合专家系统

机器之心:新视角设计下一代时序基础模型,Salesforce推出Moirai-MoE

图片

60 Optimal Information Retention for Time-Series Explanations

链接https://icml.cc/virtual/2025/poster/43746

作者:Jinghang Yue, Jing Wang, Lu Zhang, Shuo Zhang, Da Li, Zhaoyang Ma, Youfang Lin

关键词:最优信息保留原则,可解释性

61 Timing: Temporality-Aware Integrated Gradients for Time Series Explanation

链接https://icml.cc/virtual/2025/poster/43941

作者:Hyeongwon Jang, Changhun Kim, Eunho Yang

关键词:可解释性,积分梯度

62 IMTS is Worth Time Channel Patches: Visual Masked Autoencoders for Irregular Multivariate Time Series Prediction

链接https://icml.cc/virtual/2025/poster/46570

作者:Zhangyi Hu, Jiemin Wu, Hua XU, Mingqian Liao, Ninghui Feng, Bo Gao, Songning Lai, Yutao Yue

关键词:预测,不规则时间序列

63 Relational Conformal Prediction for Correlated Time Series

链接https://icml.cc/virtual/2025/poster/43601

作者:Andrea Cini, Alexander Jenkins, Danilo Mandic, Cesare Alippi, Filippo Maria Bianchi

关键词:共形预测,关联时间序列

图片


相关链接
 

ICML 2025 Accepted Papers:https://icml.cc/virtual/2025/papers.html


欢迎各位作者投稿近期有关时空数据时间序列录用的顶级会议期刊的优秀文章解读,我们将竭诚为您宣传,共同学习进步。如有意愿,请通过后台私信与我们联系。


推荐阅读

ICLR 2025 | 时空数据(Spatial-Temporal)论文总结

ICLR 2025 | 时间序列(Time Series)论文总结

ICML 2024 时间序列(Time Series)和时空数据(Spatial-Temporal)论文总结【抢先版】

ICML 2023 | 时间序列(Time Series)和时空数据(Spatial-Temporal)论文总结

目前尚未有针对 ICML 2025 的具体会议安排或已发表的时间序列研究论文,因为该年度的会议还未举行。然而,可以基于当前的趋势推测未来可能的研究方向。 ### 可能的研究趋势 时间序列分析作为机器学习领域的重要分支,在近年来得到了广泛关注。以下是一些潜在的方向: #### 谱采样方法改进 谱采样马尔可夫链蒙特卡洛 (Spectral Subsampling MCMC) 方法已经在处理平稳时间序列方面取得了显著进展[^2]。未来的扩展可能会集中在非平稳时间序列上,或者通过更高效的采样策略来减少计算复杂度。 ```python import numpy as np def spectral_subsample_mcmc(data, subsample_rate=0.5): """ A simplified example of Spectral Subsampling MCMC. Parameters: data (np.ndarray): Input time series data. subsample_rate (float): Rate at which to subsample the spectrum. Returns: np.ndarray: Subsampled spectral representation. """ fft_data = np.fft.rfft(data) sampled_indices = np.random.choice(len(fft_data), int(subsample_rate * len(fft_data)), replace=False) return fft_data[sampled_indices] time_series = np.array([1, 2, 3, 4, 5]) subsampled_spectrum = spectral_subsample_mcmc(time_series) print(subsampled_spectrum) ``` #### 长表示学习 随着数据量的增长,“长表示”(Long Representation)成为了一个重要话题。ICML 2021 已经讨论了一些与此相关的工作[^1]。预计到 2025 年,这一领域的研究将进一步深入,特别是在高效存储和快速检索大规模时间序列模式方面的技术革新。 #### 多模态融合 多模态数据(如视频帧、传感器读数等)中的时间依赖关系建模也是一个活跃的研究领域。结合深度学习框架下的注意力机制与图神经网络可能是解决此类问题的有效途径之一。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值