ICML 2025 | 时间序列(Time Series)论文总结
ICML 2025将在2025年7月13日至7月19日(周六)在温哥华会议中心举行,本文总结了ICML 2025有关时间序列(Time Series)相关文章,共计63篇。
时间序列Topic:预测,分类,异常检测,生成,概率预测,不规则时间序列,因果发现,基础模型,大语言模型,多模态等。如有疏漏,欢迎补充!
如果论文总结中有(模型)图,则论文已经在网络上公开(arXiv,Openreview等)
-
Patch-wise Structural Loss for Time Series Forecasting
-
TimeDART: A Diffusion Autoregressive Transformer for Self-Supervised Time Series Representation
-
BRIDGE: Bootstrapping Text to Control Time-Series Generation via Multi-Agent Iterative Optimisation and Diffusion Modelling
-
Hi-Patch: Hierarchical Patch GNN for Irregular Multivariate Time Series
-
HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting
-
LSCD: Lomb--Scargle Conditioned Diffusion for Irregular Time series Imputation
-
LETS Forecast: Learning Embedology for Time Series Forecasting
-
TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting
-
Towards a General Time Series Forecasting Model with Unified Representation and Adaptive Transfer
-
When Will It Fail?: Anomaly to Prompt for Forecasting Future Anomalies in Time Series
-
TransPL: Pseudo-Labeling via Code Transitions for Time Series Adaptation
-
Channel Normalization for Time Series Channel Identification
-
Slimming the Fat-Tail: MoF for Adaptive Time Series Modeling
-
Privacy Amplification by Structured Subsampling for Deep Differentially Private Time Series Forecasting
-
CMoS: Rethinking Time Series Prediction Through the Lens of Chunk-wise Spatial Correlations
-
Exploring Representations and Interventions in Time Series Foundation Models
-
CFPT: Empowering Time Series Forecasting through Cross-Frequency Interaction and Periodic-Aware Timestamp Modeling
-
Causal Discovery from Conditionally Stationary Time Series
-
TimeBridge: Non-Stationarity Matters for Long-term Time Series Forecasting
-
AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting
-
TimePro: Efficient Multivariate Long-term Time Series Forecasting with Variable- and Time-Aware Hyper-state
-
TimeFilter: Patch-Specific Spatial-Temporal Graph Filtration for Time Series Forecasting
-
A Non-isotropic Time Series Diffusion Model with Moving Average Transitions
-
Spectral-Aware Reservoir Computing for Fast and Accurate Time Series Classification
-
Time Series Representations with Hard-Coded Invariances
-
Time-VLM: Exploring Multimodal Vision-Language Models for Augmented Time Series Forecasting
-
Non-stationary Diffusion For Probabilistic Time Series Forecasting
-
VAE: A Koopman-Kalman Enhanced Variational AutoEncoder for Probabilistic Time Series Forecasting
-
LangTime: A Language-Guided Unified Model for Time Series Forecasting with Proximal Policy Optimization
-
Shifting time: Time-series forecasting with Khatri-Rao neural operators
-
Optimal Information Retention for Time-Series Explanations
-
Lightweight Online Adaption for Time Series Foundation Model Forecasts
-
Conditional Diffusion Model with Nonlinear Data Transformation for Time Series Forecasting
-
Retrieval Augmented Time Series Forecasting
-
IMTS is Worth Time Channel Patches: Visual Masked Autoencoders for Irregular Multivariate Time Series Prediction
-
Relational Conformal Prediction for Correlated Time Series
-
In-Context Fine-Tuning for Time-Series Foundation Models
-
FSTLLM: Spatio-Temporal LLM for Few Shot Time Series Forecasting
-
A Closer Look at Transformers for Time Series Forecasting: Understanding Why They Work and Where They Struggle
-
Temporal Query Network for Efficient Multivariate Time Series Forecasting
-
TimePoint: Accelerated Time Series Alignment via Self-Supervised Keypoint and Descriptor Learning
-
LightGTS: A Lightweight General Time Series Forecasting Model
-
Efficient Time Series Processing for Transformers and State-Space Models through Token Merging
-
SKOLR: Structured Koopman Operator Linear RNN for Time-Series Forecasting
-
Generating Hypotheses of Dynamic Causal Graphs in Neuroscience: Leveraging Generative Factor Models of Observed Time Series
-
LAST SToP for Modeling Asynchronous Time Series
-
WAVE: Weighted Autoregressive Varing Gate for Time Series Forecasting
-
KAN-AD: Time Series Anomaly Detection with Kolmogorov–Arnold Networks
-
Sundial: A Family of Highly Capable Time Series Foundation Models
-
KoNODE: Koopman-Driven Neural Ordinary Differential Equations with Evolving Parameters for Time Series Analysis
-
ITFormer: Bridging Time Series and Natural Language for Multi-Modal QA with Large-Scale Multitask Dataset
-
FIC-TSC: Learning Time Series Classification with Fisher Information Constraint
-
Learning Soft Sparse Shapes for Efficient Time-Series Classification
-
VisionTS: Visual Masked Autoencoders Are Free-Lunch Zero-Shot Time Series Forecasters
-
Winner-takes-all for Multivariate Probabilistic Time Series Forecasting
-
Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting
-
VerbalTS: Generating Time Series from Texts
-
TimeBase: The Power of Minimalism in Efficient Long-term Time Series Forecasting
-
Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization
-
Empowering Time Series Foundation Models with Sparse Mixture of Experts
-
Causality-Aware Contrastive Learning for Robust Multivariate Time-Series Anomaly Detection
-
Timing: Temporality-Aware Integrated Gradients for Time Series Explanation
-
Arrow: Accelerator for Time Series Causal Discovery with Time Weaving
1 TimeDART: A Diffusion Autoregressive Transformer for Self-Supervised Time Series Representation
链接:https://icml.cc/virtual/2025/poster/43701
作者:Daoyu Wang, Mingyue Cheng, Zhiding Liu, Qi Liu
关键词:预测,自回归,自监督
时序人:TimeDART:结合扩散去噪与自回归建模的时间序列自监督学习新框架
2 Time Series Representations with Hard-Coded Invariances
链接:https://icml.cc/virtual/2025/poster/45216
作者:Thibaut Germain, Chrysoula Kosma, Laurent Oudre
关键词:表示学习,不变性,卷积
3 Exploring Representations and Interventions in Time Series Foundation Models
链接:https://icml.cc/virtual/2025/poster/44453
作者:Michal Wilinski, Mononito Goswami, Nina Żukowska, Willa Potosnak, Artur Dubrawski
关键词:基础模型,表示学习
4 Towards a General Time Series Forecasting Model with Unified Representation and Adaptive Transfer
链接:https://icml.cc/virtual/2025/poster/46383
作者:Yihang Wang, Yuying Qiu, Peng Chen, Kai Zhao, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang, Chenjuan Guo
关键词:预测,少样本,零样本
5 TimeFilter: Patch-Specific Spatial-Temporal Graph Filtration for Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/46502
作者:Yifan Hu, Guibin Zhang, Peiyuan Liu, Disen Lan, Naiqi Li, Dawei Cheng, Tao Dai, Shutao Xia, Shirui Pan
关键词:预测,时空图,通道关系
圆圆的算法笔记:Patch粒度图学习多元时序预测新方法,灵活建模变量间和时序间关系
6 Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization
链接:https://icml.cc/virtual/2025/poster/46131
作者:Luca Masserano, Abdul Fatir Ansari, Boran Han, Xiyuan Zhang, Christos Faloutsos, Michael Mahoney, Andrew Wilson, Youngsuk Park, Syama Sundar Yadav Rangapuram, Danielle Maddix, Yuyang Wang
关键词:预测,基础模型,小波变换,token化
7 Time-VLM: Exploring Multimodal Vision-Language Models for Augmented Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/44762
作者:Siru Zhong, Weilin Ruan, Ming Jin, Huan Li, Qingsong Wen, Yuxuan Liang
关键词:预测,多模态,视觉语言模型
8 Lightweight Online Adaption for Time Series Foundation Model Forecasts
链接:https://icml.cc/virtual/2025/poster/44485
作者:Thomas Lee, William Toner, Rajkarn Singh, Artjom Joosen, Martin Asenov
关键词:预测,基础模型,在线学习
9 When Will It Fail?: Anomaly to Prompt for Forecasting Future Anomalies in Time Series
链接:https://icml.cc/virtual/2025/poster/45978
作者:Min-Yeong Park, Won-Jeong Lee, Seong Tae Kim, Gyeong-Moon Park
关键词:异常检测,提示
10 TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/46428
作者:Qinglong Liu, Cong Xu, Wenhao Jiang, Kaixuan Wang, Lin Ma, Haifeng Li
关键词:预测,非平稳性,多尺度
11 AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/43518
作者:Abdelhakim Benechehab, Vasilii Feofanov, Giuseppe Paolo, Albert Thomas, Maurizio Filippone, Balázs Kégl
关键词:预测,基础模型,单变量,概率预测
12 TimePro: Efficient Multivariate Long-term Time Series Forecasting with Variable- and Time-Aware Hyper-state
链接:https://icml.cc/virtual/2025/poster/43851
作者:Xiaowen Ma, Zhen-Liang Ni, Shuai Xiao, Xinghao Chen
关键词:预测,时间感知,变量感知
13 Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/43827
作者:Zhining Liu, Ze Yang, Xiao Lin, Ruizhong Qiu, Tianxin Wei, Yada Zhu, Hendrik Hamann, Jingrui He, Hanghang Tong
关键词:预测,自适应
14 TimeBridge: Non-Stationarity Matters for Long-term Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/43973
作者:Peiyuan Liu, Beiliang Wu, Yifan Hu, Naiqi Li, Tao Dai, Jigang Bao, Shutao Xia
关键词:长时预测,非平稳性
时序人:清华与深大提出TimeBridge,有效处理长期时间序列预测中的非平稳性问题
15 HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/43741
作者:Boyuan Li, Yicheng Luo, Zhen Liu, Junhao Zheng, Jianming Lv, Qianli Ma
关键词:预测,超图神经网络,不规则多元时序
16 LETS Forecast: Learning Embedology for Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/45595
作者:Abrar Majeedi, Viswanatha Reddy Gajjala, Satya Sai Srinath Namburi GNVV, Nada Elkordi, Yin Li
关键词:预测,经验动态建模
17 Privacy Amplification by Structured Subsampling for Deep Differentially Private Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/44722
作者:Jan Schuchardt, Mina Dalirrooyfard, Jed Guzelkabaagac, Anderson Schneider, Yuriy Nevmyvaka, Stephan Günnemann
关键词:预测,差分隐私
18 TimeBase: The Power of Minimalism in Efficient Long-term Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/45815
作者:Qihe Huang, Zhengyang Zhou, Kuo Yang, Zhongchao Yi, Xu Wang, Yang Wang
关键词:预测,极简主义,高效性
19 CFPT: Empowering Time Series Forecasting through Cross-Frequency Interaction and Periodic-Aware Timestamp Modeling
链接:https://icml.cc/virtual/2025/poster/44425
作者:Feifei Kou, Jiahao Wang, Lei Shi, Yuhan Yao, Yawen Li, Suguo Zhu, Zhongbao Zhang, Junping Du
关键词:预测,时间戳建模,跨频交互
20 Winner-takes-all for Multivariate Probabilistic Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/46485
作者:Adrien Cortes, Remi Rehm, Victor Letzelter
关键词:预测,多元概率预测
21 Conditional Diffusion Model with Nonlinear Data Transformation for Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/44243
作者:RISHI JINKA, Venkata Sai Mothish Gonugunta, Deepak N. Subramani
关键词:预测,非线性变换,条件扩散模型
22 Patch-wise Structural Loss for Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/44030
作者:Dilfira Kudrat, Zongxia Xie, Yanru Sun, Tianyu Jia, Qinghua Hu
关键词:预测,结构化损失
圆圆的算法笔记:时序预测损失函数优化:Patch粒度分布损失函数提升时序预测效果
科学最TOP:Patch-wise Structural:一种引入局部统计特性的时序预测损失函数
23 FSTLLM: Spatio-Temporal LLM for Few Shot Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/44031
作者:Yue Jiang, Yile Chen, Xiucheng Li, Qin Chao, SHUAI LIU, Gao Cong
关键词:预测,少样本,时空大模型
24 Non-stationary Diffusion For Probabilistic Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/44783
作者:Weiwei Ye, Zhuopeng Xu, Ning Gui
关键词:预测,概率预测,扩散,非平稳
25 VAE: A Koopman-Kalman Enhanced Variational AutoEncoder for Probabilistic Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/46346
作者:Xingjian Wu, Xiangfei Qiu, Hongfan Gao, Jilin Hu, Chenjuan Guo, Bin Yang
关键词:概率预测,变分自编码器,库普曼,卡尔曼
26 Shifting time: Time-series forecasting with Khatri-Rao neural operators
链接:https://icml.cc/virtual/2025/poster/44565
作者:Srinath Dama, Kevin L Course, Prasanth B Nair
关键词:时间序列建模、时空建模、时移算子、Khatri-Rao 神经算子、神经算子、算子学习
27 LangTime: A Language-Guided Unified Model for Time Series Forecasting with Proximal Policy Optimization
链接:https://icml.cc/virtual/2025/poster/45059
作者:Wenzhe Niu, Zongxia Xie, Yanru Sun, Wei He, Man Xu, Chao Hao
关键词:预测,语言模型,近端策略优化(PPO)
28 Retrieval Augmented Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/45826
作者:Sungwon Han, Seungeon Lee, MEEYOUNG CHA, Sercan Arik, Jinsung Yoon
关键词:预测,检索增强(RAG)
圆圆的算法笔记:ICML'25 | 基于多尺度检索的时间序列预测方法
29 Temporal Query Network for Efficient Multivariate Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/44603
作者:Shengsheng Lin, Haojun Chen, Haijie Wu, Chunyun Qiu, Weiwei Lin
关键词:预测,时间查询,多元时间序列预测
30 A Closer Look at Transformers for Time Series Forecasting: Understanding Why They Work and Where They Struggle
链接:https://icml.cc/virtual/2025/poster/44262
作者:Yu Chen, Nathalia Céspedes, Payam Barnaghi
关键词:预测,Transformer
31 LightGTS: A Lightweight General Time Series Forecasting Model
链接:https://icml.cc/virtual/2025/poster/44879
作者:Yihang Wang, Yuying Qiu, Peng Chen, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang, Chenjuan Guo
关键词:预测,轻量化
32 SKOLR: Structured Koopman Operator Linear RNN for Time-Series Forecasting
链接:https://icml.cc/virtual/2025/poster/44949
作者:Yitian Zhang, Liheng Ma, Antonios Valkanas, Boris Oreshkin, Mark Coates
关键词:预测,库普曼算子
33 WAVE: Weighted Autoregressive Varing Gate for Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/45318
作者:Jiecheng Lu, Xu Han, Yan Sun, Shihao Yang
关键词:预测,自回归
34 VisionTS: Visual Masked Autoencoders Are Free-Lunch Zero-Shot Time Series Forecasters
链接:https://icml.cc/virtual/2025/poster/46441
作者:Mouxiang Chen, Lefei Shen, Zhuo Li, Xiaoyun Wang, Jianling Sun, Chenghao Liu
关键词:预测,多模态
机器之心:时序=图像?无需微调,视觉MAE跨界比肩最强时序预测大模型
35 Causality-Aware Contrastive Learning for Robust Multivariate Time-Series Anomaly Detection
链接:https://icml.cc/virtual/2025/poster/45960
作者:HyunGi Kim, Jisoo Mok, Dong Jun Lee, Jaihyun Lew, Sungjae Sungjae, Sungroh Yoon
关键词:异常检测,因果感知
36 KAN-AD: Time Series Anomaly Detection with Kolmogorov–Arnold Networks
链接:https://icml.cc/virtual/2025/poster/45584
作者:Quan Zhou, Changhua Pei, Fei Sun, Jianhui LI, haiming zhang, Gaogang Xie, Dan Pei, Zhengwei Gao, HanJing
关键词:异常检测,KAN
37 Learning Soft Sparse Shapes for Efficient Time-Series Classification
链接:https://icml.cc/virtual/2025/poster/46130
作者:Zhen Liu, Yicheng Luo, Boyuan Li, Emadeldeen Eldele, Min Wu, Qianli Ma
关键词:分类,高效性
38 FIC-TSC: Learning Time Series Classification with Fisher Information Constraint
链接:https://icml.cc/virtual/2025/poster/45977
作者:Xiwen Chen, Wenhui Zhu, Peijie Qiu, Hao Wang, Huayu Li, ZIHAN LI, Yalin Wang, Aristeidis Sotiras, Abolfazl Razi
关键词:分类
39 Spectral-Aware Reservoir Computing for Fast and Accurate Time Series Classification
链接:https://icml.cc/virtual/2025/poster/45987
作者:Shikang Liu, Chuyang Wei, Xiren Zhou, Huanhuan Chen
关键词:分类,谱感知
40 Generating Hypotheses of Dynamic Causal Graphs in Neuroscience: Leveraging Generative Factor Models of Observed Time Series
链接:https://icml.cc/virtual/2025/poster/45009
作者:Zachary Brown, David Carlson
关键词:因果图
41 Causal Discovery from Conditionally Stationary Time Series
链接:https://icml.cc/virtual/2025/poster/44317
作者:Carles Balsells-Rodas, Xavier Sumba, Tanmayee Narendra, Ruibo Tu, Gabriele Schweikert, Hedvig Kjellström, Yingzhen Li
关键词:因果发现,平稳时间序列
42 Arrow: Accelerator for Time Series Causal Discovery with Time Weaving
链接:https://icml.cc/virtual/2025/poster/46084
作者:YUANYUAN YAO, Yuan Dong, Lu Chen, Kun Kuang, Ziquan Fang, Cheng Long, Yunjun Gao, TIANYI LI
关键词:因果发现
43 KoNODE: Koopman-Driven Neural Ordinary Differential Equations with Evolving Parameters for Time Series Analysis
链接:https://icml.cc/virtual/2025/poster/45804
作者:Hanru Bai, Weiyang Ding
关键词:时间序列分析,库普曼理论
44 TransPL: Pseudo-Labeling via Code Transitions for Time Series Adaptation
链接:https://icml.cc/virtual/2025/poster/46696
作者:Jaeho Kim, Seulki Lee
关键词:时间序列自适应
45 Efficient Time Series Processing for Transformers and State-Space Models through Token Merging
链接:https://icml.cc/virtual/2025/poster/44933
作者:Leon Götz, Marcel Kollovieh, Stephan Günnemann, Leo Schwinn
关键词:时间序列处理加速,token化,状态空间模型
46 A Non-isotropic Time Series Diffusion Model with Moving Average Transitions
链接:https://icml.cc/virtual/2025/poster/43547
作者:Chenxi Wang, Linxiao Yang, Zhixian Wang, Liang Sun, Yi Wang
47 LAST SToP for Modeling Asynchronous Time Series
链接:https://icml.cc/virtual/2025/poster/45155
作者:Shubham Gupta, Thibaut Durand, Graham Taylor, Lilian Bialokozowicz
关键词:异步时间序列,大模型
48 Slimming the Fat-Tail: MoF for Adaptive Time Series Modeling
链接:https://icml.cc/virtual/2025/poster/44444
作者:Tianyu Liu, kai sun, Fuchun Sun, Yu Luo, Yuanlong Zhang
关键词:时间序列建模,变形流
49 In-Context Fine-Tuning for Time-Series Foundation Models
链接:https://icml.cc/virtual/2025/poster/43707
作者:Matthew Faw, Rajat Sen, Yichen Zhou, Abhimanyu Das
50 Sundial: A Family of Highly Capable Time Series Foundation Models
链接:https://icml.cc/virtual/2025/poster/45591
作者:Yong Liu, Guo Qin, Zhiyuan Shi, Zhi Chen, Caiyin Yang, Xiangdong Huang, Jianmin Wang, Mingsheng Long
关键词:基础模型,多任务
AI论文速读 | 日晷(Sundial):一系列高性能时间序列基础模型
51 ITFormer: Bridging Time Series and Natural Language for Multi-Modal QA with Large-Scale Multitask Dataset
链接:https://icml.cc/virtual/2025/poster/45847
作者:Yilin Wang, Peixuan Lei, chen tao, Jie Song, Haoyuzhe, Yuxuan Zhang, LEI JIA, Yuanxiang Li, Zhongyu Wei
关键词:多模态问答,多任务
52 TimePoint: Accelerated Time Series Alignment via Self-Supervised Keypoint and Descriptor Learning
链接:https://icml.cc/virtual/2025/poster/44741
作者:Ron Shapira Weber, shahar benishay, Shahaf E. Finder, Andrey Lavrinenko, Oren Freifeld
关键词:对齐,自监督
53 Channel Normalization for Time Series Channel Identification
链接:https://icml.cc/virtual/2025/poster/45365
作者:Seunghan Lee, Taeyoung Park, Kibok Lee
关键词:通道归一化,通道验证
54 CMoS: Rethinking Time Series Prediction Through the Lens of Chunk-wise Spatial Correlations
链接:https://icml.cc/virtual/2025/poster/44558
作者:Haotian Si, Changhua Pei, Dan Pei, Gaogang Xie, Jianhui LI
关键词:预测,分块空间
55 LSCD: Lomb--Scargle Conditioned Diffusion for Irregular Time series Imputation
链接:https://icml.cc/virtual/2025/poster/45821
作者:Elizabeth M Fons Etcheverry, Alejandro Sztrajman, Yousef El-Laham, Luciana Ferrer, Svitlana Vyetrenko, Manuela Veloso
关键词:插补,不规则时间序列,扩散
56 VerbalTS: Generating Time Series from Texts
链接:https://icml.cc/virtual/2025/poster/45631
作者:Shuqi Gu, Chuyue Li, Baoyu Jing, Kan Ren
关键词:时间序列生成,文本数据
57 Hi-Patch: Hierarchical Patch GNN for Irregular Multivariate Time Series
链接:https://icml.cc/virtual/2025/poster/44115
作者:Yicheng Luo, Bowen Zhang, Zhen Liu, Qianli Ma
关键词:不规则时间序列,图神经网络
58 BRIDGE: Bootstrapping Text to Control Time-Series Generation via Multi-Agent Iterative Optimisation and Diffusion Modelling
链接:https://icml.cc/virtual/2025/poster/43728
作者:Hao Li, Yu-Hao Huang, Chang Xu, Viktor Schlegel, Renhe Jiang, Riza Batista-Navarro, Goran Nenadic, Jiang Bian
关键词:生成,AI智能体59 Empowering Time Series Foundation Models with Sparse Mixture of Experts
链接:https://icml.cc/virtual/2025/poster/45201
作者:Xu Liu, Juncheng Liu, Gerald Woo, Taha Aksu, Yuxuan Liang, Roger Zimmermann, Chenghao Liu, Junnan Li, Silvio Savarese, Caiming Xiong, Doyen Sahoo
关键词: 时间序列基础模型,混合专家系统
机器之心:新视角设计下一代时序基础模型,Salesforce推出Moirai-MoE
60 Optimal Information Retention for Time-Series Explanations
链接:https://icml.cc/virtual/2025/poster/43746
作者:Jinghang Yue, Jing Wang, Lu Zhang, Shuo Zhang, Da Li, Zhaoyang Ma, Youfang Lin
关键词:最优信息保留原则,可解释性
61 Timing: Temporality-Aware Integrated Gradients for Time Series Explanation
链接:https://icml.cc/virtual/2025/poster/43941
作者:Hyeongwon Jang, Changhun Kim, Eunho Yang
关键词:可解释性,积分梯度
62 IMTS is Worth Time Channel Patches: Visual Masked Autoencoders for Irregular Multivariate Time Series Prediction
链接:https://icml.cc/virtual/2025/poster/46570
作者:Zhangyi Hu, Jiemin Wu, Hua XU, Mingqian Liao, Ninghui Feng, Bo Gao, Songning Lai, Yutao Yue
关键词:预测,不规则时间序列
63 Relational Conformal Prediction for Correlated Time Series
链接:https://icml.cc/virtual/2025/poster/43601
作者:Andrea Cini, Alexander Jenkins, Danilo Mandic, Cesare Alippi, Filippo Maria Bianchi
关键词:共形预测,关联时间序列
相关链接
ICML 2025 Accepted Papers:https://icml.cc/virtual/2025/papers.html
欢迎各位作者投稿近期有关时空数据和时间序列录用的顶级会议和期刊的优秀文章解读,我们将竭诚为您宣传,共同学习进步。如有意愿,请通过后台私信与我们联系。
推荐阅读
ICLR 2025 | 时空数据(Spatial-Temporal)论文总结
ICLR 2025 | 时间序列(Time Series)论文总结