混合专家模型 (MoE) 详解
原创 Hugging Face
随着 Mixtral 8x7B (announcement, model card) 的推出,一种称为混合专家模型 (Mixed Expert Models,简称 MoEs) 的 Transformer 模型在开源人工智能社区引起了广泛关注。在本篇博文中,我们将深入探讨 MoEs 的核心组件、训练方法,以及在推理过程中需要考量的各种因素。
让我们开始吧!
简短总结
混合专家模型 (MoEs):
-
与稠密模型相比, 预训练速度更快
-
与具有相同参数数量的模型相比,具有更快的 推理速度
-
需要 大量显存,因为所有专家系统都需要加载到内存中
-
在 微调方面存在诸多挑战,但 近期的研究 表明,对混合专家模型进行 指令调优具有很大的潜力。
让我们