大模型国产化适配10-快速迁移大模型到昇腾910B保姆级教程(Pytorch版)

大模型国产化适配10-快速迁移大模型到昇腾910B保姆级教程(Pytorch版)

原创 吃果冻不吐果冻皮 吃果冻不吐果冻皮 2024年07月02日 09:01 四川

随着 ChatGPT 的现象级走红,引领了AI大模型时代的变革,从而导致 AI 算力日益紧缺。与此同时,中美贸易战以及美国对华进行AI芯片相关的制裁导致 AI 算力的国产化适配势在必行。之前也分享过一些国产 AI 芯片、使用国产 AI 框架 Mindformers 基于昇腾910训练大模型,使用 MindIE 进行大模型服务化。

另外,我撰写的大模型相关的博客及配套代码均整理放置在Github:llm-action,有需要的朋友自取。

而本文将讲述如何快速迁移大模型到昇腾910B,相信很多人入门大模型都是从斯坦福羊驼开始,本文将使用羊驼的训练代码和训练数据集快速将baichuan2-7B/13B、qwen1.5-7B/14B大模型在昇腾910B上面进行训练。之前的文章讲过 从0到1复现斯坦福羊驼(Stanford Alpaca 7B),本文不再赘述,斯坦福羊驼的整体思路如下图所示。

图片

image.png

声明:本次只做训练流程上面的验证,不做loss精度的对齐,不同模型训练的细微差异需视具体情况进行调整。

准备工作

  • 操作系统版本/架构:EulerOS 2.0 (SP10)/aarch64

  • NPU:8x 910B 64G

  • Python:3.9

  • NPU 驱动:24.1.rc1,下载

  • NPU 固件:7.1.0.6.220,下载

  • CANN 工具包:7.0.0,下载

  • Pytorch及torch_npu插件:2.1.0,下载

  • Docker镜像环境ascend-mindspore:23.0.0-A2-ubuntu18.04 ,下载

  • DeepSpeed:0.14.1, 下载

查询所有设备的基本信息。

> npu-smi info
+------------------------------------------------------------------------------------------------+
| npu-smi 24.1.rc1                 Version: 24.1.rc1                                             |
+---------------------------+---------------+----------------------------------------------------+
| NPU   Name                | Health        | Power(W)    Temp(C)           Hugepages-Usage(page)|
| Chip                      | Bus-Id        | AICore(%)   Memory-Usage(MB)  HBM-Usage(MB)        |
+===========================+===============+====================================================+
| 0     910B1               | OK            | 95.7        36                0    / 0             |
| 0                         | 0000:C1:00.0  | 0           0    / 0          3306 / 65536         |
+===========================+===============+=================================================&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值