Plantnet源码解析

from utils import set_seed, load_model, save, get_model, update_optimizer, get_data
from epoch import train_epoch, val_epoch, test_epoch
from cli import add_all_parsers


def train(args):
    set_seed(args, use_gpu=torch.cuda.is_available())
    train_loader, val_loader, test_loader, dataset_attributes = get_data(args.root, args.image_size, args.crop_size,
                                                                         args.batch_size, args.num_workers, args.pretrained)

    model = get_model(args, n_classes=dataset_attributes['n_classes'])
    criteria = CrossEntropyLoss()

    if args.use_gpu:
        print('USING GPU')
        torch.cuda.set_device(0)
        model.cuda()
        criteria.cuda()

    optimizer = SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.mu, nesterov=True)

    # Containers for storing metrics over epochs
    loss_train, acc_train, topk_acc_train = [], [], []
    loss_val, acc_val, topk_acc_val, avgk_acc_val, class_acc_val = [], [], [], [], []

    save_name = args.save_name_xp.strip()
    save_dir = os.path.join(os.getcwd(), 'results', save_name)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    print('args.k : ', args.k)

    lmbda_best_acc = None
    best_val_acc = float('-inf')

GPT-4-Turbo

Poe

以下是对代码中每一行的逐行解释

  1. from utils import set_seed, load_model, save, get_model, update_optimizer, get_data

    • 从 utils 模块导入 set_seedload_modelsaveget_modelupdate_optimizerget_data 几个函数。
  2. from epoch import train_epoch, val_epoch, test_epoch

    • 从 epoch 模块导入 train_epochval_epochtest_epoch 几个函数。
  3. from cli import add_all_parsers

    • 从 cli 模块导入 add_all_parsers 函数
  4. def train(args):

    • 定义一个名为 train 的函数,它接受一个参数 args
  5. set_seed(args, use_gpu=torch.cuda.is_available())

    • 调用 set_seed 函数,设置随机数种子以确保结果可复制。此函数接受一个参数 use_gpu,其值由 torch.cuda.is_available() 决定,这个表达式检测是否有可用的 GPU。
  6. train_loader, val_loader, test_loader, dataset_attributes = get_data(args.root, args.image_size, args.crop_size, args.batch_size, args.num_workers, args.pretrained)

    • 调用 get_data 函数获取数据加载器和数据集属性。此函数接受多个参数,包括数据根目录、图像大小、裁剪大小、批次大小、工作线程数量和是否使用预训练模型。
  7. model = get_model(args, n_classes=dataset_attributes['n_classes'])

    • 调用 get_model 函数创建模型,模型类型由 args 决定,类别数 (n_classes) 从 dataset_attributes 字典中获取。
  8. criteria = CrossEntropyLoss()

    • 创建一个 CrossEntropyLoss 对象,用于计算模型的损失函数。
  9. if args.use_gpu:

    • 检查 args 中的 use_gpu 参数是否为真,判断是否使用 GPU。
  10. print('USING GPU')

    • 如果使用 GPU,打印 "USING GPU"。
  11. torch.cuda.set_device(0)

    • 设置当前 CUDA 设备为第一个 GPU(编号为0)。
  12. model.cuda()

    • 将模型移至 GPU。
  13. criteria.cuda()

    • 将损失函数对象移至 GPU。
  14. optimizer = SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.mu, nesterov=True)

    • 创建 SGD 优化器,配置学习率、动量、权重衰减和 Nesterov 加速。
  15. loss_train, acc_train, topk_acc_train = [], [], []

    • 初始化训练过程中损失、准确率和 top-k 准确率的列表。
  16. loss_val, acc_val, topk_acc_val, avgk_acc_val, class_acc_val = [], [], [], [], []

    • 初始化验证过程中损失、准确率、top-k 准确率、平均 k 准确率和类别准确率的列表。
  17. save_name = args.save_name_xp.strip()

    • 从 args 中获取实验保存名称,并去除可能的首尾空白字符。
  18. save_dir = os.path.join(os.getcwd(), 'results', save_name)

    • 创建一个路径,该路径是当前工作目录、"results" 文件夹和实验名称的组合。
  19. if not os.path.exists(save_dir):

    • 检查该路径是否存在。
  20. os.makedirs(save_dir)

    • 如果路径不存在,则创建该目录。
  21. print('args.k : ', args.k)

    • 打印 args 中的 k 值。
  22. lmbda_best_acc = None

    • 初始化一个变量 lmbda_best_acc,用于可能的最佳准确率存储。
  23. best_val_acc = float('-inf')

    • 初始化 best_val_acc 为负无穷大,用于比较和更新验证过程中的最佳准确率。

这段代码是一个训练模型的函数,涵盖了从数据加载、模型构建、设备设置到优化器配置等多个方面。

for epoch in tqdm(range(args.n_epochs), desc='epoch', position=0):
        t = time.time()
        optimizer = update_optimizer(optimizer, lr_schedule=args.epoch_decay, epoch=epoch)

        loss_epoch_train, acc_epoch_train, topk_acc_epoch_train = train_epoch(model, optimizer, train_loader,
                                                                              criteria, loss_train, acc_train,
                                                                              topk_acc_train, args.k,
                                                                              dataset_attributes['n_train'],
                                                                              args.use_gpu)

        loss_epoch_val, acc_epoch_val, topk_acc_epoch_val, \
        avgk_acc_epoch_val, lmbda_val = val_epoch(model, val_loader, criteria,
                                                  loss_val, acc_val, topk_acc_val, avgk_acc_val,
                                                  class_acc_val, args.k, dataset_attributes, args.use_gpu)

        # save model at every epoch
        save(model, optimizer, epoch, os.path.join(save_dir, save_name + '_weights.tar'))

        # save model with best val accuracy
        if acc_epoch_val > best_val_acc:
            best_val_acc = acc_epoch_val
            lmbda_best_acc = lmbda_val
            save(model, optimizer, epoch, os.path.join(save_dir, save_name + '_weights_best_acc.tar'))

        print()
        print(f'epoch {epoch} took {time.time()-t:.2f}')
        print(f'loss_train : {loss_epoch_train}')
        print(f'loss_val : {loss_epoch_val}')
        print(f'acc_train : {acc_epoch_train} / topk_acc_train : {topk_acc_epoch_train}')
        print(f'acc_val : {acc_epoch_val} / topk_acc_val : {topk_acc_epoch_val} / '
              f'avgk_acc_val : {avgk_acc_epoch_val}')

    # load weights corresponding to best val accuracy and evaluate on test
    load_model(model, os.path.join(save_dir, save_name + '_weights_best_acc.tar'), args.use_gpu)
    loss_test_ba, acc_test_ba, topk_acc_test_ba, \
    avgk_acc_test_ba, class_acc_test = test_epoch(model, test_loader, criteria, args.k,
                                                  lmbda_best_acc, args.use_gpu,
                                                  dataset_attributes)

    # Save the results as a dictionary and save it as a pickle file in desired location

这段代码为训练模型的主循环部分以及测试模型的代码块,下面是对每行代码的解释:

  1. for epoch in tqdm(range(args.n_epochs), desc='epoch', position=0):

    • 使用 tqdm 库创建一个进度条,迭代从 0 到 args.n_epochs总的训练周期数)。
  2. t = time.time()

    • 记录当前时间,用于计算本轮训练的耗时。
  3. optimizer = update_optimizer(optimizer, lr_schedule=args.epoch_decay, epoch=epoch)

    • 调用 update_optimizer 函数更新优化器的参数,可能会根据 args.epoch_decay 调整学习率
  4. loss_epoch_train, acc_epoch_train, topk_acc_epoch_train = train_epoch(model, optimizer, train_loader, criteria, loss_train, acc_train, topk_acc_train, args.k, dataset_attributes['n_train'], args.use_gpu)

    • 调用 train_epoch 函数进行一轮训练,返回训练的损失、准确率和 top-k 准确率
  5. loss_epoch_val, acc_epoch_val, topk_acc_epoch_val, \ avgk_acc_epoch_val, lmbda_val = val_epoch(model, val_loader, criteria, loss_val, acc_val, topk_acc_val, avgk_acc_val, class_acc_val, args.k, dataset_attributes, args.use_gpu)

    • 调用 val_epoch 函数进行一轮验证,返回验证的损失、准确率、top-k 准确率、平均 k 准确率和某个验证参数 lmbda_val
  6. save(model, optimizer, epoch, os.path.join(save_dir, save_name + '_weights.tar'))

    • 调用 save 函数将当前模型和优化器状态保存到文件。
  7. if acc_epoch_val > best_val_acc:

    • 检查本轮验证准确率是否超过之前的最佳准确率。
  8. best_val_acc = acc_epoch_val

    • 更新最佳验证准确率。
  9. lmbda_best_acc = lmbda_val

    • 更新与最佳验证准确率相对应的 lmbda_val
  10. save(model, optimizer, epoch, os.path.join(save_dir, save_name + '_weights_best_acc.tar'))

    • 将具有最佳验证准确率的模型和优化器状态保存到文件。
  11. print()

    • 打印一个空行。
  12. print(f'epoch {epoch} took {time.time()-t:.2f}')

    • 打印本轮训练耗时。
  13. print(f'loss_train : {loss_epoch_train}')

    • 打印本轮训练的损失。
  14. print(f'loss_val : {loss_epoch_val}')

    • 打印本轮验证的损失。
  15. print(f'acc_train : {acc_epoch_train} / topk_acc_train : {topk_acc_epoch_train}')

    打印本轮训练的准确率和 top-k 准确率。
  16. print(f'acc_val : {acc_epoch_val} / topk_acc_val : {topk_acc_epoch_val} / ' f'avgk_acc_val : {avgk_acc_epoch_val}')

    打印本轮验证的准确率、top-k 准确率和平均 k 准确率。   
  17.  load_model(model, os.path.join(save_dir, save_name + '_weights_best_acc.tar'), args.use_gpu)
  18. 加载具有最佳验证准确率的模型权重
  19. loss_test_ba, acc_test_ba, topk_acc_test_ba, \ avgk_acc_test_ba, class_acc_test = test_epoch(model, test_loader, criteria, args.k, lmbda_best_acc, args.use_gpu, dataset_attributes)
      • 使用最佳模型权重进行测试,返回测试的损失、准确率、top-k 准确率、平均 k 准确率和类别准确率。
    • # Save the results as a dictionary and save it as a pickle file in desired location

      • 此行注释说明应该将测试结果作为字典保存,并将其作为 pickle 文件保存在指定位置,尽管实际的保存代码在这里没有显示。
<think>好的,我现在需要回答用户关于如何使用VGG16模型进行植物叶片识别时如何划分数据集的问题。首先,我需要回顾用户提供的引用内容,看看有没有相关的信息可以支持回答。 用户提到了引用[1]、[2]、[4],其中引用[1]讨论了民族药植物数据集的构建和SE-ResNet34-Transfer方法,引用[2]提到了PlantNet-300K数据集的划分方式,分为train、val、test三个文件夹,每个包含子文件夹,这可能对数据集划分有帮助。引用[4]是用户提供的代码示例,里面导入了PyTorch的相关库,并可能涉及数据加载的部分,可能涉及数据划分的方法。 用户的问题是询问如何划分数据集以使用VGG16进行植物叶片识别,需要详细的方法介绍。根据我的知识,数据集划分通常分为训练集、验证集和测试集,比例一般是70-20-10或者60-20-20等。另外,可能需要考虑类别平衡,尤其是在植物叶片识别中,不同类别的样本数量可能差异大,如长尾分布问题,引用[2]中提到的PlantNet-300K就存在这种情况,因此需要注意分层抽样或者过采样/欠采样技术。 另外,用户提到的引用[1]中自建数据集时可能面临样本量少和背景复杂的问题,所以在划分数据集时可能需要增强数据,比如数据增强技术,如旋转、裁剪、翻转等,这在引用[4]的代码中可能有所体现,比如transforms的使用。 接下来,我需要将这些信息整合成步骤,包括数据收集、预处理、划分比例、数据增强、加载方法等。同时,可能需要结合代码示例,如引用[4]中的PyTorch代码,展示如何具体实现数据划分和加载。 还要注意用户提到的VGG16模型,这个模型通常需要输入固定尺寸的图像,比如224x224,所以在预处理阶段可能需要调整图像尺寸。此外,迁移学习在引用[1]中被提到,可能适用于小样本数据集,所以在划分数据集时,如果数据量小,可能需要使用迁移学习,并微调模型,这时候验证集的作用就很重要,用来调整超参数和防止过拟合。 总结步骤应该是: 1. 数据收集与预处理:确保图像统一尺寸,处理无效区域(如引用[1]中的背景问题),可能应用数据增强。 2. 数据集划分:按比例分为训练集、验证集、测试集,注意类别平衡(分层划分)。 3. 数据加载:使用PyTorch的Dataset和DataLoader,应用数据增强到训练集,验证和测试集可能只做归一化。 4. 迁移学习:加载预训练的VGG16,修改最后一层,冻结部分层进行微调。 5. 训练与验证:使用验证集调整超参数,测试集评估最终性能。 需要检查引用中的内容是否支持这些步骤。例如,引用[2]中的PlantNet-300K数据集已经划分为train、val、test,这可能作为例子。引用[4]中的代码导入了datasets,可能使用了ImageFolder,按文件夹划分数据集,这可以用于实现自动划分。此外,引用[1]提到的迁移学习方法可以结合到VGG16的应用中,特别是当数据量较少时。 可能还需要提到一些注意事项,比如数据泄露问题,确保同一植物的不同图像不会同时出现在训练和测试集中;以及类别平衡,尤其是在长尾分布的情况下,可能需要分层抽样或采用加权采样等方法,如引用[2]中的PlantNet-300K具有长尾分布,所以划分时要注意保持各集合中类别分布一致。 最后,用户可能需要具体的代码示例,如使用PyTorch的ImageFolder和random_split,或者train_test_split方法,以及应用transforms进行数据增强,如引用[4]中的transforms.Compose部分。 在回答时,需要结构清晰,分步骤说明,并引用相关文献中的例子,比如引用[1]的数据集构建和迁移学习,引用[2]的数据集划分结构,引用[4]的代码框架。</think>### VGG16模型进行植物叶片识别的数据集划分方法 #### 1. **数据收集与预处理** - **统一图像尺寸**:将植物叶片图像调整为VGG16的标准输入尺寸$224 \times 224$,例如通过`Resize`操作。 - **背景处理**:若图像包含土壤、杂草等无效区域(如引用[1]所述),需通过裁剪或图像分割技术保留叶片主体。 - **数据增强**:对训练集应用随机增强(如旋转、翻转、亮度调整),验证集和测试集仅做归一化处理[^4]。 ```python # 示例代码(引用[4]扩展) train_transform = transforms.Compose([ transforms.Resize(224), transforms.RandomHorizontalFlip(), transforms.RandomRotation(15), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) val_test_transform = transforms.Compose([ transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) ``` #### 2. **数据集划分策略** - **比例划分**:常用比例为**训练集70%、验证集15%、测试集15%**(小样本可调整为60-20-20)。 - **分层抽样**:确保每个类别的样本在训练、验证、测试集中分布一致,避免长尾分布影响(如引用[2]中PlantNet-300K的标签模糊问题)。 - **按文件夹划分**:若数据集已按类别分文件夹(如引用[2]的PlantNet-300K结构),可直接使用`ImageFolder`加载后随机拆分: ```python from torchvision.datasets import ImageFolder from torch.utils.data import random_split dataset = ImageFolder(root="plant_images", transform=transform) train_size = int(0.7 * len(dataset)) val_size = (len(dataset) - train_size) // 2 test_size = len(dataset) - train_size - val_size train_set, val_set, test_set = random_split(dataset, [train_size, val_size, test_size]) ``` #### 3. **数据加载与模型适配** - **DataLoader配置**:设置批量大小(通常为32或64),训练集使用`shuffle=True`增强泛化性: ```python train_loader = torch.utils.data.DataLoader(train_set, batch_size=32, shuffle=True) val_loader = torch.utils.data.DataLoader(val_set, batch_size=32, shuffle=False) test_loader = torch.utils.data.DataLoader(test_set, batch_size=32, shuffle=False) ``` - **迁移学习适配**:加载预训练的VGG16模型,替换全连接层输出为植物类别数,冻结卷积层参数后微调[^1]: ```python import torchvision.models as models model = models.vgg16(pretrained=True) for param in model.parameters(): # 冻结卷积层 param.requires_grad = False model.classifier[6] = nn.Linear(4096, num_classes) # 替换最后一层 ``` #### 4. **注意事项** - **避免数据泄露**:同一植株的不同叶片图像需严格划分到同一集合中。 - **长尾分布处理**:若类别样本量差异大(如引用[2]),可采用过采样(如SMOTE)或损失函数加权。 - **验证集作用**:用于超参数调优(如学习率、正则化系数),防止模型过拟合小样本数据。 --- ### 相关工具与案例 - **工具推荐**:使用`scikit-learn`的`StratifiedKFold`实现分层划分,或`splitfolders`库按比例分割文件夹。 - **案例参考**:引用[1]中通过迁移学习提升小样本性能;引用[4]使用PyTorch完成马铃薯病害数据加载与训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值