详细解释transformer架构、Encoder和Decoder都是用6层堆叠而成,为什么不是其他的层

Transformer 是一种深度学习模型架构,最初由 Vaswani 等人在 2017 年论文《Attention Is All You Need》中提出。它主要用于自然语言处理(NLP)任务(如机器翻译、语言建模)以及计算机视觉任务(如图像分类)。Transformer 的核心特点是基于 注意力机制(Attention Mechanism) ,不依赖传统的序列结构(如 RNN 或 LSTM),能够高效地并行处理大规模数据。

以下是对 Transformer 架构的详细解释。


1. Transformer 的整体结构

Transformer 的架构由两个核心模块组成:

  • Encoder(编码器):从输入序列提取特征
  • Decoder(解码器):结合编码器的输出目标序列,生成最终输出。

1.1 基本组件数量

  • Encoder:由多个(通常是 6 个)编码层堆叠而成。
  • Decoder:由多个(通常是 6 个)解码层堆叠而成。

每个编码层和解码层都包含两个关键子模块:

  • 多头注意力机制(Multi-Head Attention)
  • 前馈神经网络(Feed-Forward Neural Network)

此外,模型还使用了 残差连接(Residual Connection)层归一化(Layer Normalization),以便加速训练和稳定梯度。


2. 主要组件的工作原理

2.1 输入处理

Transformer 使用嵌入层(Embedding Layer)将输入序列中的每个词或标记(Token)转化为固定维度的向量表示。

(1) Token Embedding
  • 将输入序列(如单词或子词)映射到一个固定长度的向量空间。
  • 假设输入序列为 x = [x_1, x_2, ..., x_n],每个词通过嵌入层映射为 d_model 维向量。
(2) 位置编码(Positional Encoding)

由于 Transformer 没有循环和卷积结构,缺乏显式的顺序信息,因此需要通过位置编码显式加入序列位置信息。

  • 位置编码是一种固定模式的向量,加入到输入的嵌入向量中。

  • 常见的实现方式是使用正弦和余弦函数:

    PE(pos,2i)=sin⁡(pos100002i/dmodel)PE_{(pos, 2i)} = \sin\left(\frac{p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值