深度长文|MIT 最新研究:AI 自主构建知识,认知能力指数级跃升

深度长文|MIT 最新研究:AI 自主构建知识,认知能力指数级跃升

原创 chouti 涌现聚点 2025年03月14日 08:43 上海

在人工智能的浩瀚星空中,知识的构建与演化如同星云般壮丽而复杂。然而,长期以来,我们所依赖的 AI 系统,却仿佛置身于封闭的宇宙,它们只能被动地接收和处理人类预先设定的知识,难以主动探索未知的领域,更无法像人类一样,在与世界的互动中不断学习和成长。

这种局限性,就像一座 “空中楼阁”,缺乏与现实世界的连接,也难以应对真实场景中复杂多变的需求。例如,在自动驾驶领域,AI 系统虽然能够识别交通信号和道路标识,但面对突发的交通事故或恶劣的天气状况,往往难以做出正确的决策,导致安全隐患。

幸运的是,MIT 的研究人员 Markus J. Buehler 在 2025 年 2 月 18 日发表于 arXiv 的一篇预印论文《Agentic Deep Graph Reasoning Yields Self-Organizing Knowledge Networks》[1]中,为我们展现了一种全新的可能性。他们提出了一种名为 具身智能驱动的动态知识网络” 的 AI 框架,该框架通过让 AI 模型在一个动态演化的图结构中进行长时间的推理,使其能够自主地发现知识、建立联系,并形成复杂的认知结构。正如论文摘要所描述的那样,该框架:

actively generates new concepts and relationships, merges them into a global graph, and formulates subsequent prompts based on its evolving structure.

那么,这种框架究竟有何独特之处?它又是如何突破传统 AI 的局限性,实现更高效、更智能的知识构建呢?本文将带您一同解读这篇论文,深入了解具身智能如何重塑 AI 的认知未来。

AI 知识的 “空中楼阁” 困境

要理解 MIT 提出的框架,首先需要认识到传统 AI 在知识构建方面所面临的挑战。长期以来,AI 系统主要依赖于两种方式来获取知识:

  1. 人工标注数据: 这种方式需要人类专家对大量数据进行标注,例如:图像识别、语音识别等任务。然而,这种方式不仅成本高昂,而

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值