两周独立开发游戏Demo实录:AI工具配合Unreal如何让我一人完成全流程
原创 MengzhoYang LitGate 2025年04月29日 12:00 广东
前言
当下的游戏开发领域中,随着人工智能(AI)工具的引入,独立开发者的工作效率得到了显著的提升。于是,在本次实践中,我结合Unreal Engine 5与多种AI工具,利用两周时间,成功构建了一款轨道光枪射击游戏的原型。从前期的策划构思、美术资源生成,再到程序逻辑实现和音频配乐创作,开发的每个环节都由AI协助。而我作为唯一的开发者则可以专注于高效产出游戏内容,从而避免了创作思路因繁琐细节而被频繁打断。
以下是本次制作原型流程的快剪视频,完整流程视频在文章最后。
,时长01:43
AI相关工具概览
项目全程使用了多种AI工具,它们在策划、美术、程序、音频、配音等环节扮演了“多面”助手的角色。
-
策划阶段:ChatGPT和Gemini帮助激发创意,撰写设计文档。
-
美术阶段:DeepSeek和Midjourney快速生成概念图及美术设定。
-
程序开发:ChatGPT辅助,通过蓝图实现各模块功能需求。
-
音频制作:利用生成式AI自动作曲和制作音效。
-
配音:使用TTS(文本转语音)生成角色对白。
这里可以看到,AI几乎参与了开发的全流程,这使我能长时间保持创作心流,高效地产出内容。正是这些工具的赋能,让我一个人就完成了以往需要多人协作才能够完成的任务。
项目管理
项目动机与灵感来源
立项之初,我首先明确了几个核心问题:“这是一款怎样的游戏?核心玩法是什么?为何选择这个创意?属于哪种游戏类型?计划在哪个平台发布?”这有助于确立清晰的项目方向。
我的灵感来源颇为多元:一方面是《DOOM》与《动物森友会》的恶搞视频、《糖豆人》与《DOOM》的联动活动,另一方面则借鉴了街机版《恶魔城》的玩法设计。由此,我构思了一个结合近战斩击与远程射击的轨道射击游戏:玩家沿预定轨道移动,既可用光枪射击远处的敌人,也能用激光剑应对近身的威胁(砍杀或格挡)。这种玩法组合在传统轨道光枪射击游戏中较为少见,具备一定的新颖性。
考虑到仅有两周的开发时间,轨道射击这种流程线性、边界清晰的类型非常合适。加入近战元素则旨在凸显游戏的特色。这样的设计既在一定程度上保证了创意的独特性,又能有效控制开发范围,适合快速原型开发的目标。
时间管理与规划
明确创意后,如何高效利用两周时间至关重要。我借助Google Gemini,根据初步策划案自动生成了一份详细的项目开发计划。这份AI生成的计划列出了每日的任务要点,规划了核心功能的实现顺序,并预留了调整空间。
虽然AI的计划无法完全贴合实际,但它提供了一个极佳的起点,显著减少了手动规划的时间。我利用这份计划梳理了开发顺序,并制定了每日待办清单。同时,我使用腾讯文档记录To-Do列表和开发日志,根据实际进展随时调整计划。在“AI PM”的支持下,我能够专注于每日目标,稳步推进项目。
策划案
核心玩法
玩家将置身于一个可爱的赛博朋克风格世界,沿着预设轨道展开一场快节奏的战斗冒险。在这里,不仅需要适应灵活切换光枪与激光剑,还需要在精准射击远处目标与迅速格挡近身威胁之间求生。
系统策划与功能拆解
确定核心玩法后,我再次借助Gemini生成了一份约十页的游戏策划案初稿,详述了世界观、核心循环、敌人和关卡设计等。在此基础上,我让Gemini进一步产出了更详细的系统设计方案,将游戏所需的功能模块逐一拆解。
主要模块包括:
-
轨道与镜头控制:利用Unreal Engine的Sequencer时间轴全程驱动玩家的轨道移动和摄像机切换。预先设定好移动路径和镜头角度,实现类似“过山车”式的自动视角运动。
-
输入与战斗机制:创建灵敏的鼠标输入系统。左键点击射击(激光枪),按住并拖拽进行挥砍(激光剑)。玩家需根据情况切换操作。
-
武器与攻击系统:开发模块化的双武器系统(激光枪与激光剑)。激光枪负责远程点射,激光剑负责近战挥砍和格挡反弹。两者均有独立的冷却和判定逻辑。
-
敌人系统:构建多样化、可扩展的敌人管理系统。包括近战杂兵、远程射手、特殊弹幕敌人、精英怪和Boss等。系统需支持不同的行为模式,并能与Sequencer事件联动,在指定时间生成或激活敌人。
AI生成的系统策划案为我提供了清晰的功能列表和实现思路,极大加速了设计过程。传统方式可能需要数天完成的文档工作,在AI协助下仅用几小时便完成了初稿。
玩法循环说明
基于上述机制,游戏的核心玩法循环得以明确:
-
玩家沿固定轨道前进。
-
敌人按脚本在路径上出现。
-
玩家使用光枪射击清理远处和空中威胁。
-
敌人逼近或发射可格挡弹药时,切换激光剑进行近战挥砍或精准格挡反弹。
-
根据局势在射击与挥砍间快速切换,消灭不同组合的敌人。
-
持续战斗累积分数和连击奖励,直至关卡结束或遭遇Boss战。
这个循环贯穿每个关卡,节奏上通常由小怪骚扰开始,逐步增加难度,最终以Boss战收尾,旨在形成紧张刺激的战斗体验。
原型可行性验证与规模控制
在正式开发前,我利用ChatGPT对设计的核心功能点进行了可行性分析,并获得了一份MVP(最小可行产品)建议报告。报告建议先制作一个简短关卡,验证轨道射击+近战的基本可玩性。
这符合快速迭代原则:先搭建最小原型,再逐步扩展。我遵循了一个“原型估算法则”来控制规模:“如果某个玩法原型用1天能做出来,那么扩展成完整游戏则可能需要1年;如果要2天完成原型制作,完整游戏制作则大概需要2年。以此类推。”这个法则提醒我必须将原型限定在数日工作量内,以确保两周内能完成。
因此,我将第一周的主要目标定为实现核心玩法最小循环的原型关卡。
美术概念
音乐与音效概念
为了快速确定音乐基调,我采用了“先有音乐后有画面”的反向思路。这里我使用了Suno AI,这是一款强大的生成式AI音乐创作工具,它能根据用户提供的歌词和风格要求(提示词)自动谱曲并进行演唱。
Suno AI的一个有趣特性是支持在歌词中插入用括号括起的“元标签”(Meta Tags),例如 [Intro]、[Male Voice]、[Interlude]、[Female Voice]、[Guitar Solo]等。这些标签可以用来指导和调整歌曲的结构、演唱者性别、乐器使用以及整体风格(如流行、电子等),从而实现更丰富的定制化内容。Suno官网提供了详细的元标签列表供参考。
在我的实践中,首先使用DeepSeek生成了简短的歌词,并在提示词中指定了“Electronic 电子”、“Solo 独唱”等基础风格标签。Suno很快就根据这些输入,产出了多段结构完整(包含前奏、主歌、副歌等部分)、风格不同的哼唱歌曲。
,时长01:08
通过比较,我选取了其中更贴合游戏快节奏战斗氛围的电子乐段落,作为主题曲的雏形。尽管AI生成的音乐还需要后续的人工调整与混音,但利用Suno AI在项目前期快速探索和确定音乐方向,效率非常高。
世界观与风格设定
根据策划案,我设定了一个融合科幻与卡通的世界观。游戏发生在一个未来科技与萌系美学交织的架空世界:Q版风格的未来战士,在霓虹色的赛博城市中对抗入侵的恶魔军团。这种反差美术旨在营造可爱有趣又不失热血刺激的氛围。
关键风格参考包括:《糖豆人》结合可爱动物的卡通造型与配色,以及赛博朋克的霓虹科幻元素。将这些元素融合,构成了游戏独特的风格调性。
概念图与角色设计
在这个阶段我主要使用DeepSeek和Midjourney进行概念美术创作。首先,利用DeepSeek生成详细的美术提示词(Prompts)。DeepSeek能根据我的思路发散并生成富有想象力且精确的描述文本。例如,我描述了希望角色融合《糖豆人》的圆润可爱与赛博机械感,DeepSeek据此生成了细致的Midjourney提示词。
将这些提示词输入Midjourney,最终顺利得到了符合预期的角色概念图。为了快速确定角色的完整造型,我在提示词中加入了“three views, front, side, back”等提示词,让Midjourney一次性生成角色的正、侧和背面三视图。这对于统一设计细节和指导后续3D建模非常有帮助。
概念片头制作流程
除了静态概念图,我还制作了一段概念性的开场动画。整个流程结合了多种AI工具:
脚本与分镜:首先,我利用DeepSeek编写开场剧情的文字脚本,详细描述场景、节奏和关键镜头。然后,将这份文字脚本交给Midjourney进行可视化,生成了一系列对应情节的场景插画,这些插画拼接起来便构成了分镜故事板。
、
、
、
视频生成:接着,使用国内AI视频生成工具“可灵”(Kling)来制作动画片段。可灵操作简单,不仅支持图生视频,也支持文生视频。这里为了保证动画的稳定与连贯,我将Midjourney生成的分镜图逐帧导入可灵,结合提示词设定镜头运动和衔接方式,成功生成了多个动态视频片段。相较于其他同类工具(如 OpenAI Sora),可灵在当时提供了更符合需求的视频生成效果,极大地节省了传统动画制作的时间。
音效生成:有了视频片段,下一步便是为其添加音效。我利用本地部署的 ComfyUI工作流环境,运行了MMAudio模型。这个模型能根据输入的视频内容和相关提示词,生成匹配的环境音效或特定声音。我将无声的原始视频片段输入MMAudio,并给出如“未来都市街道战争场景”的提示,模型便生成了包含警报、机械运转、能量武器充能等声音的复合音效片段(建议单次生成10秒左右,对硬件有一定要求,需约16G或更大显存)。
最终合成:最后一步是整合所有素材。我将之前用Suno生成的主题曲雏形、可灵生成的视频片段以及MMAudio生成的音效,导入视频剪辑软件中进行编辑、混音和同步,最终输出完整的概念片头视频。
通过这一系列AI工具的组合运用,我高效地完成了概念片头的制作,为游戏奠定了视听基调。
技术准备
版本控制设置
尽管是单人开发,我依然在家里的NAS服务器上使用Docker部署了SVN 版本库。Unreal Engine对SVN支持良好,配置简便,且适合处理游戏开发中的二进制大文件。
接入版本控制后,我可以随时创建分支或提交checkpoint,无惧实验性改动带来的风险,可以随时回滚或对比版本差异。这对于使用蓝图编程尤其重要,UE5 的蓝图编辑器也支持版本Diff功能。良好的版本管理是快速迭代的可靠后盾。
Sequencer扩展实现核心轨道机制
作为轨道射击游戏,Sequencer扮演着核心调度的角色。我事先研究了UE5 Sequencer的事件触发机制,确认其不仅可用于过场动画,也能驱动游戏玩法。Sequencer可以精确控制事件触发时间点,非常适合节奏型游戏。
我计划将玩家移动路径和镜头切换完全交由Sequencer时间轴控制。通过在 Level Sequence资产中设定关键帧来控制玩家视角的位置和朝向,实现预设路线的自动移动和镜头过渡。
同时,我需要Sequencer触发游戏事件(如生成敌人、播放动画)。为此,我探索了Sequencer的自定义事件轨道扩展功能。可以在Sequencer中添加事件关键帧,并绑定到关卡蓝图的自定义事件上。当时间轴播放到该帧时,自动调用预设的游戏逻辑。例如,扩展Sequencer轨道控制敌人出现与行为:在时间轴编辑器添加“怪物出现”、“怪物攻击”等自定义事件轨道,设定触发时间点。这种方法使关卡剧本化变得直观可控。
MVP可行性验证
我结合自身经验和ChatGPT的建议,再次进行了可行性分析,明确技术方案。ChatGPT建议优先实现最小核心玩法循环,验证射击+近战机制。确立了MVP 范围:制作一个包含基本轨道移动、若干敌人刷新和战斗环节的简短关卡,完成一次从开始到Boss战的游戏循环。
我在Unreal中快速实现了这个原型:使用Sequencer驱动第一人称控制器移动,通过时间轴事件产生飞向玩家的敌人,玩家射击消灭敌人。原型跑通后,我对游戏难度和规模有了直观的认识,同时也验证了核心玩法的可行性和趣味性。这让我能更放心地进入全面开发阶段。
,时长00:09
程序开发
玩家控制器与轨道移动
首先开发玩家控制和视角系统。玩家并非自由移动,而是被“绑”在预设轨道上。我创建了一个继承自Character的玩家角色,但不使用传统WASD控制,而是让Sequencer自动驱动其沿路径移动。
具体实现:创建一个Level Sequence,用关键帧控制玩家Pawn的Location和Rotation随时间变化。将Sequence与玩家角色绑定,播放Sequence即可驱动角色前进和转向。同时设置多个摄像机绑定,同步切换视角,营造动态镜头效果。这种方法极大减少了开发量,并保证了镜头表现的一致性。
战斗系统实现
核心是射击和近战逻辑。利用Unreal的输入系统绑定鼠标操作:左键单击触发射击,左键按住并拖拽触发挥剑。
-
射击:使用Linetrace(直线射线检测)模拟子弹轨迹。每次点击,从摄像机中心向准星方向发射射线,碰撞到敌人则调用其受击逻辑。
-
近战:相对复杂。玩家角色持有一把隐藏的“激光剑”。检测到鼠标拖拽时,记录轨迹判断挥砍方向和力度(简化做法是将拖拽转换为屏幕划线,检测敌人是否在划线对应的近战范围内)。
武器与敌人模块
在Blueprint中为激光枪和激光剑创建独立的攻击组件。激光枪组件处理射线检测、特效播放、伤害计算等。激光剑组件处理近战判定、特效及格挡判定。
敌人方面,我规划了四种类型:近战型、飞行型、飞行射击型和Boss。对于前三种非Boss敌人,我采用了AIController配合行为树(Behavior Tree)来控制它们的行为逻辑。在这种方式下,开发重点在于设计好行为树节点,之后只需要处理怪物的生成和销毁逻辑即可,具体的移动、攻击决策则由AIController和行为树自动完成。而对于Boss,考虑到其行为模式通常更复杂且需要与关卡节奏精确同步,其大部分行为(如阶段转换、特殊技能释放等)则主要通过Sequencer的事件轨道来驱动和控制。
游戏事件与关卡逻辑
游戏流程由一系列事件点串联。我定义了一种LevelPoint关卡事件节点类(继承自LevelSequenceActor)来管理流程。在关卡中沿轨道放置多个LevelPoint,每个节点关联一个Sequencer资产,用于安排该节点发生的事件(敌人出现、对话触发等)。
LevelPoint节点自身可以配置其完成后要跳转的下一个LevelPoint,或者根据条件跳转到不同的分支LevelPoint。当玩家到达某个LevelPoint时,系统会播放其绑定的Sequencer,执行其中安排好的事件序列(如生成敌人、播放动画、触发对话等)。当该LevelPoint的完成条件满足时(例如,所有生成的怪物都被消灭,或者达到了设定的超时时间),系统会自动切换到配置好的下一个 LevelPoint,并开始播放其对应的Sequence。为了支持更复杂的条件判断和流程控制,我还对Sequencer进行了扩展,添加了用于判断当前游戏状态并据此触发LevelPoint切换的自定义轨道。
这种“节点+时间轴”的方法使关卡逻辑模块化且更加直观,只需编辑各LevelPoint的时间线即可构筑关卡流程。
蓝图脚本AI辅助
在编写Blueprint逻辑时,ChatGPT成为了得力助手。当遇到疑问时直接提问(如“如何在Sequencer事件中生成敌人并触发攻击?”、“鼠标拖拽如何转换为近战判定?”),ChatGPT通常能给出详尽的分步解答,引用官方文档或社区答案,有时甚至附带蓝图截图或伪代码。
例如,询问如何在蓝图中动态修改材质参数,ChatGPT会迅速告知使用“Create Dynamic Material Instance”节点,并提醒保存引用。按照指导,很快就能完成激光剑击中敌人时改变光效的功能。
AI辅助显著提升了Blueprint开发的速度和信心。虽然AI的回答有时需要根据实际情况有所调整,但总体而言,它像一个全天候的技术顾问,解决了大量细节问题。
资产制作
2D UI与界面元素
UI风格需与整体美术(可爱赛博风)保持一致。我尝试使用GPT-4o生成指定风格(如《喷射战士》风格)的游戏内平面美术资产。通过提供明确提示(包括参考图片、颜色、布局、文字说明)并不断调整,最终得到了一套卡通涂鸦风格的界面元素图(如霓虹涂鸦管道状的生命/能量槽,炫彩喷溅效果的记分板)。
GPT-4o的生图功能(2025年3月发布)在项目实践中体验下来,优缺点并存。
-
优势在于:学习成本低、易用高效、功能全面(文生图、图生图、多图参考提升一致性、可应用于产品图/icon/风格迁移等),且多模态能力有助制作汇报材料、科普插图等。
-
缺点则包括:对话长度限制影响理解、细节一致性仍有偏差(不适用于精确产品迁移)、分辨率限制(多视图生成不完整需手动拼接),以及提示词可能受限(可通过垫图缓解)。
总结而言,GPT4o是强大的赋能工具,开启了思路大于技术的时代,新的平面设计工作流正在形成。
音效和配乐制作
音频制作使用AI工具:
-
音效:使用Stable Audio音频生成平台,通过简单、直观的提示词(如“机械装置停止运转的声音”、“激光剑挥舞空气的尖啸声”)快速制作枪声、爆炸声、怪物吼叫等音效。本地部署版本提高了效率。
-
背景音乐:原型阶段使用Suno生成的曲子暂代。
3D建模与贴图
传统3D美术耗时,此次借助AI 3D模型生成大幅提速。
模型生成
将Midjourney生成的角色三视图导入AI模型生成工具Tripo 2.5。Tripo能将2D图片转换为初步的3D模型,并自动进行网格重拓扑。几分钟内即可输出带基本贴图的3D模型,拓扑良好,面数合理,轮廓与概念图基本一致。虽然自动骨骼绑定功能尚不完善(骨架尺寸、朝向有问题),但已节省大量建模和贴图绘制时间。后续,我使用同样方法为主要敌人生成了初始模型。
模型骨骼绑定
拿到AI生成的模型后,需添加驱动模型的骨骼。使用Character Creator工具,利用其“AccuRIG”自动绑定功能,几乎一键生成了角色骨架和蒙皮权重。
动画制作
使用iClone 8处理动画。利用其丰富的动作库、动作捕捉数据和动画重定向功能,快速为角色添加基础动画(跑步、开枪、挥剑、受击等)。将网上找到的通用动作重定向到游戏中的角色骨骼上,稍加调整即可使用,这大幅节省了手动K帧时间。
iClone的AI姿态辅助功能(移动任意一个肢体,其他部位智能跟随做出合理姿势)非常实用,能以直观方式微调动作。
制作好的动画通过FBX导出并导入Unreal。至此,游戏的主要角色都具备了基础模型和动作。整个资产制作流程(概念图 -> 3D 模型 ->绑定 -> 动画)在AI的协助下效率答复提升,将原本可能需要数周的工作压缩到几天内完成。
关卡设计
AI辅助关卡流程策划
由于时间有限,我让Gemini直接参考街机版《恶魔城》的流程,输出了一份节点式的关卡流程图。Gemini对经典游戏的理解相当到位,生成的示例流程(开场 -> 小怪 -> 中 Boss -> 更多小怪 -> 最终 Boss)很实用,甚至细化了各阶段敌人种类和数量。我结合自身设定,修改形成了最终的关卡脚本。
关卡搭建与LevelPoint系统
利用之前开发的LevelPoint机制搭建关卡。沿玩家轨道路径放置多个LevelPoint事件节点。每个LevelPoint关联一个Level Sequence资产,在Sequencer中编辑该节点发生的具体事件。
例如,LevelPoint1的Sequence中,按时间顺序安排敌人生成事件、镜头晃动、角色台词等,定义了一个小高潮战斗。当玩家移动到LevelPoint1区域,触发条件满足,便播放此Sequence,敌人按预定节奏出现,战斗展开。
清理完敌人后,轨道继续前进至LevelPoint2,其Sequence可能触发过场动画和小型Boss战。依此类推,直至最终Boss战结束,触发关卡结算。
这种“节点+时间轴”的方法,使得关卡流程的创建和调整非常灵活直观,如同剪辑电影片段。只需调用已开发好的各模块(玩家控制、战斗、敌人等),在Sequencer里排布事件顺序即可。需要调整难度或增加剧情时,只需在Sequencer中增删或修改事件节点。
对话系统
对白生成与配音思路
为了增加随机趣味性,我决定尝试实时生成对白,让每次游玩的对话略有不同,而不是使用预设语音脚本。设计思路是:每到剧情节点,让AI根据情境即时生成一句台词,再合成语音播放。
,时长00:14
实现方式
-
集成AIITK插件:购入并集成了Unreal商城的AIITK(AI Integration ToolKit) 插件,它封装了对OpenAI API的调用,可在蓝图中直接使用GPT模型。
-
设置接口与Prompt模板:在项目中设置调用OpenAI GPT-4的接口,并编写了几个对白生成的Prompt模板(区分普通战斗、Boss战等场景)。
-
实时生成文本:游戏运行到相应剧情节点(LevelPoint)时,触发蓝图调用AIITK,发送Prompt给OpenAI请求回复。要求模型返回JSON格式,包含中文对白(用于字幕)和英文翻译(用于语音合成)。
-
TTS语音合成:使用OpenAI的TTS服务。在UE中封装函数,调用TTS API,将获取的英文对白文本发送过去,获取对应的WAV语音数据。将此调用也集成在AIITK蓝图节点中,实现文本生成后自动合成语音。
对白生成流程
-
生成对白文本:AIITK+GPT根据Prompt和上下文实时生成中英文对白 (JSON)。
-
生成语音:解析JSON,提取英文文本,调用TTS API生成语音。
-
播放与显示:通过Unreal Audio组件播放语音,同时在屏幕UI显示中文字幕。
整个过程在数秒内完成,实现了运行时对白的自动创造。每次游玩,同一场景的角色台词几乎不会重复,增加了新鲜感,且无需人工编写剧本和录音。
挑战与优化
-
Prompt与上下文控制:Prompt需详细设定,控制每句对白长度,避免模型混淆上下文。多句对话分开多次调用。
-
一致性问题:AI可能引入新细节或用词不一致。通过Prompt强调设定来提高一致性,但细微偏差在所难免。原型阶段尚可接受。
-
性能:尽量在过场或加载时异步生成对话,避免等待返回卡顿。
这个动态对话系统展示了AI在游戏叙事和交互上的新潜力,提供了不同于传统脚本的新奇体验。
总结与反思
AI 辅助开发的优势
十四天时间,从零到Demo完成,AI提供了前所未有的支持。它让独立开发者能在各领域保持高效产出,不再会因短板导致的卡顿影响创作心流。AI的自动化加速了原本繁琐工作,让我更专注于创意和设计。在“思路大于技术”的时代,拥有创意并懂得驱动AI实现创意,将成为开发者的新竞争力。
AI 工具的局限与反思
然而,AI也并非万能,产出仍需人工审校和打磨。策划案需要调整,美术部分AI会给出不符合预期的资产,LLM生成的剧情也可能跑偏,AI生成的代码、对白等也存在逻辑错误或缺乏一致性的问题。所以,提示工程(Prompt Engineering) 至关重要,目前我们需要学习的是如何准确传达意图引导AI。
因此,随着AI技术的飞速发展和广泛应用,游戏开发领域正迎来前所未有的范式革新。但我们要始终铭记:在技术洪流中,创意才是游戏永恒的灵魂,体验才是玩家不变的需求。让我们驾驭AI这一强大工具,将天马行空的想象力转化为触动人心的游戏体验,共同开创超越想象的互动艺术新纪元!
最后一个小彩蛋,这是利用GPT-4o生成的游戏主题表情,有兴趣可以扫码使用。