深度解析知识图谱增强的GraphRAG及医药案例

本文详细探讨了知识图谱如何增强GraphRAG在复杂RAG系统中的应用,涉及技术策略如块分割、查询增强、层次结构和多跳推理,以及医药行业案例。文章还提及了RAG系统中未解决的问题和未来发展的机遇。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度解析知识图谱增强的GraphRAG及医药案例

原创 KGGPT 知识图谱科技 2024-03-09 10:37

本文重点讨论在实施复杂RAG时涉及的各种技术考虑因素,包括分块、查询扩充、层次结构、多跳推理和知识图谱增强的概念以及医药行业的案例。同时讨论RAG基础设施领域中尚未解决的问题和机遇,并介绍一些构建RAG流水线的基础设施解决方案。

在构建RAG系统时,首先面临的障碍和设计选择是如何准备文档以供存储和信息提取。这将是本文的主要重点。作为一个复习,这里是一个RAG系统架构的概述。

Source: https://blog.griddynamics.com/retrieval-augmented-generation-llm/

相关性和相似性

在讨论RAG中的有效信息检索时,理解“相关性”和“相似性”的区别至关重要。相似性是指字词匹配方面的相似性,而相关性是关于思想的联系性。你可以使用矢量数据库查询来识别语义上相近的内容,但要识别和检索相关内容需要更复杂的工具。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值