CLIP (Contrastive Language-Image Pre-training) 和 BLIP (Bootstrapping Language-Image Pre-training) 都是视觉-语言预训练模型,但有一些重要区别:
CLIP
- 模型架构:CLIP采用双编码器结构,分别对图像和文本进行编码,然后计算两个编码的相似度。
- 预训练方式:CLIP使用对比学习的方式进行预训练,通过最大化正确图文对的相似度,最小化错误图文对的相似度来学习视觉-语言对齐。
- 数据来源:CLIP使用从互联网上爬取的大量图文对数据进行预训练,数据量大但噪声较多。
BLIP
- 模型架构:BLIP采用编码器-解码器架构,能够生成图像描述。包含图像编码器、文本编码器和解码器三个主要部分。
- 预训练方式:BLIP在CLIP的基础上,引入了字幕生成和过滤模块(CapFilt),用于生成和过滤高质量的图文对数据,降低噪声。
- 数据来源:BLIP使用CapFilt模块生成的高质量图文对数据进行预训练,数据量较小但质量较高。
- 应用:除了图像-文本对齐外,BLIP