[代码大模型]MHPP: Exploring the Capabilities and Limitations of Language Models Beyond Basic Code Generat

Abstract (translated)

近年来,大型语言模型(LLMs)的进步在代码生成方面大大提高了性能,尤其是在功能级别。例如,GPT-4在HumanEval上的通过率为88.4%。然而,这引发了质疑现有基准在全面评估功能级别代码生成能力方面的充分性。我们的研究分析了两个常见的基准,HumanEval和MBPP,并发现,由于质量、难度和粒度等方面的限制,这些基准可能无法充分评估LLMs的代码生成能力。为解决这个问题,我们引入了主要由人类编写的M Mostly Hard Python Problems(MHPP)数据集,包括140个独特的由人类编写的独特问题。通过关注自然语言和代码推理的结合,MHPP衡量了LLMs理解规范和限制、进行多步推理以及有效应用编程知识的能力。使用MHPP评估22个LLM后,许多在HumanEval上表现优秀的模型在MHPP上未能取得类似的成功。此外,MHPP揭示了各种LLM中 previously未被发现的问题,使我们相信,它可能为更好地理解LLMs的能力和限制铺平道路。数据集和代码可在此链接下载:https://www.aclweb.org/anthology/H2022-10203176/

这篇论文名为“MHPP: Exploring the Capabilities and Limitations of Language Models

### 评估DeepSeek模型在AIME 2024竞赛中的Pass@1表现 为了全面理解DeepSeek模型在AIME 2024竞赛中pass@1指标的表现,可以从多个角度进行分析。 #### 性能对比 DeepSeek-V2作为一种混合专家语言模型,在成本效益方面表现出显著优势[^3]。然而,具体到AIME 2024竞赛的pass@1性能,则需考虑该模型在类似编程挑战上的历史成绩以及其架构特点对于解决此类问题的有效性。 #### 数据集适用性 考虑到用于训练和测试DeepSeek的数据集中包含了HumanEval、LiveCodeBench-Base、MBPP 和CRUXEval等多个专注于代码生成与修复的任务集合[^2],这些数据集涵盖了广泛的编程场景和技术栈,有助于提升模型应对实际编码挑战的能力。因此,可以推测DeepSeek具备良好的基础来处理像AIME这样的编程比赛题目。 尽管如此,值得注意的是,不同赛事的具体要求可能存在差异,特别是针对特定领域或高级算法的应用情况。这意味着即使有相似背景的支持,也不能完全预测某一特定场合下的确切得分。 ```python # 假设我们有一个函数 evaluate_model_performance(model_name, dataset) def evaluate_model_performance(model_name="DeepSeek", dataset="AIME_2024"): """ 模拟评估给定模型在指定数据集上的pass@1性能 参数: model_name (str): 被评价的模型名称,默认为 "DeepSeek" dataset (str): 测试所使用的数据集名称,默认为"AIME_2024" 返回: float: 表示通过率的结果值 """ # 这里只是一个模拟实现,真实情况下应调用相应的API接口获取结果 simulated_pass_rate = 0.85 # 随机设定的一个较高成功率作为例子 print(f"Evaluating {model_name} on {dataset}, estimated pass@1 rate is approximately {simulated_pass_rate:.2f}") return simulated_pass_rate evaluate_model_performance() ``` 此段Python代码展示了如何创建一个简单的函数`evaluate_model_performance()` 来估计DeepSeek模型在AIME 2024上可能达到的pass@1分数。请注意这仅是一个理论性的展示,并不代表真实的评测过程或官方发布的任何统计数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值