那种量化方法更好:GPTQ vs. GGUF vs. AWQ
GPTQ
GPTQ是Post-Training Quantization for GPT Models的缩写,即GPT模型的后训练量化
GPTQ是一种针对4位量化的后训练量化方法,主要侧重于在GPU上提升推理性能。
该方法的核心思想是通过将所有权重压缩到4位量化,通过最小化权重的均方误差来实现量化。在推理过程中,它会动态将权重反量化为float16,以提高性能同时保持低内存消耗。
GPTQ是目前最常用的量化压缩方法。它主要针对GPU进行优化,如果大模型太大