Answer
多模态大模型对图像进行tokenization的过程涉及将图像数据转换为可供模型处理的离散token序列。以下是几种主要的tokenization方法及其特点:
1. 基于Patch的Tokenization
- VQ-VAE和VQGAN:
- 这些方法将图像划分为多个小块(patch),每个小块被编码为一个token。通过使用向量量化(Vector Quantization),模型能够将相似的patch映射到相同的token,从而减少冗余信息。
- 动态视觉分词器:
- LaVIT模型采用动态视觉分词器,将图像转换为token序列,类似于自然语言处理中的文本token。这种方法允许模型理解和生成视觉内容,支持高分辨率图像的处理.
2. 图像切片编码
- 切片技术:
- 通过将高分辨率图像分割成多个可变大小的切片,避免了强制填充或缩小造成的信息丢失。这种方法确保每个切片的形状与视觉编码器预训练时的标准设置相近,从而提高了处理效率.
- 区域级Tokenization:
- Groma模型采用区域提议机制,将图像分解为感兴趣区域,并将这些区域编码为区域tokens。这种方法使得模型能够在理解整体图像的同时,专注于特定区域的细节.
3. 特殊字符标记
- 为了区分不同切片在行内和不同行之间的位置,某些模型使用特殊字符(如
,
和\n
)来标记切片的位置。这种方式有助于在tokenization过程中保持图像结构的信息.
4. Token长度与分辨率无关
- 一些新兴的方法,如TiTok,提出了使用固定长度tokens来表达任意分辨率的图像。这意味着无论输入图像的大小如何,输出的token数量都是一致的,从而简化了训练过程并提高了效率.
总结
多模态大模型通过多种技术手段对图像进行tokenization,包括基于patch的方法、动态切片编码、区域级标记等。这些方法不仅提高了对高分辨率和复杂结构图像的处理能力,还优化了计算资源的使用,使得模型在多模态任务中表现更为出色。
Share
Rewrite
qwen vl是怎么对图像进行tokenization
Answer
Qwen-VL模型对图像进行tokenization的过程结合了多模态输入,主要通过以下步骤实现:
1. 输入格式
Qwen-VL支持多种输入类型,包括图像、文本和检测框。图像输入通常以文件路径的形式提供,例如:
python
query = tokenizer.from_list_format([{'image': 'path/to/image.jpg'}, {'text': 'What is this image about?'}])
2. Tokenization过程
图像编码
- 图像预处理:
- 在tokenization之前,图像会被预处理成适合模型输入的格式。这包括调整大小、归一化等步骤,以确保图像数据符合模型的输入要求。
- Patch划分:
- 图像被划分为多个patch(小块),每个patch被视为一个独立的token。这些patch可以通过卷积神经网络(CNN)提取特征,生成相应的嵌入向量。
使用TiTok Tokenizer
- Qwen-VL采用了TiTok 1D Tokenizer,这种方法允许将任意分辨率的图像转换为固定长度的tokens。每个token不仅包含局部信息,还能捕捉全局上下文。
- Encoder:
- 使用BERT结构作为Encoder,输入包括图像patch的嵌入向量和随机初始化的latent tokens。经过训练后,这些latent tokens会学习到与图像内容相关的特征。
Vector Quantization (VQ)
- 在Encoder输出后,使用Vector Quantization将连续向量转换为离散tokens。通过比较输出向量与预定义codebook中的向量,选择最接近的向量作为最终token。
Decoder
- Decoder同样采用BERT结构,输入包括从VQ中得到的离散tokens和mask tokens。Decoder会生成最终的输出,这些输出可以是文本或其他形式的数据。
3. 输出格式
- 最终生成的tokens可以用于后续任务,如视觉问答(VQA)、文本生成等。模型能够理解并处理结合了视觉和语言的信息,从而实现多模态交互。
总结
Qwen-VL通过结合图像patch划分、特征提取、固定长度token生成及向量量化等步骤,实现了高效的图像tokenization。这一过程使得模型能够在多模态任务中有效地理解和生成内容,提升了性能和应用范围。