Qwen2-VL系列 笔记精华

这篇论文介绍了Qwen2-VL系列,这是之前Qwen-VL模型的一个先进升级版。论文的主要创新点包括:

  1. Naive Dynamic Resolution机制:

    • 允许模型动态处理不同分辨率的图像,将其转换为不同数量的视觉tokens
    • 使模型能生成更高效和准确的视觉表示,更接近人类的感知过程。
  2. Multimodal Rotary Position Embedding (M-RoPE):

    • 能有效融合文本、图像和视频中的位置信息。
    • 将旋转嵌入分解为时间、高度和宽度三个组件,更好地建模多模态输入的位置信息
  3. 统一的图像和视频处理范式:

    • 采用混合训练方案,同时处理图像和视频数据。
    • 使用3D卷积来处理视频输入,允许模型处理3D管道而不是2D图像块。
  4. 规模探索:

    • 探索了大规模视觉语言模型(LVLMs)的缩放规律。
    • 提供了2B、8B和72B参数的不同规模模型版本。
  5. 多语言支持:

    • 支持多种语言的图像内容理解,包括英语、中文、大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。
  6. 长视频理解:

    • 能够理解20分钟以上的长视频。
  7. 强大的代理能力:

    • 具有先进的推理和决策能力,可以与移动设备、机器人等集成,实现基于视觉输入和文本指令的自主操作。
  8. 训练方法改进:

    • 采用三阶段训练方法,包括ViT训练、全参数训练和LLM指令微调。
    • 使用了大规模多样化的预训练数据集,包括图像-文本对、
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值